首页> 外文期刊>IEEE transactions on mobile computing >Traffic-Aware Backscatter Communications in Wireless-Powered Heterogeneous Networks
【24h】

Traffic-Aware Backscatter Communications in Wireless-Powered Heterogeneous Networks

机译:无线动力异构网络中的交通感知反向散射通信

获取原文
获取原文并翻译 | 示例

摘要

With the emerging Internet-of-Things services, massive machine-to-machine (M2M) communication will be deployed on top of human-to-human (H2H) communication in the near future. Due to the coexistence of M2M and H2H communications, the performance of M2M (i.e., secondary) networks depends largely on the H2H (i.e., primary) network. In this paper, we propose ambient backscatter communication for the M2M networks which exploits the energy (signal) sources of the H2H network, referring to its traffic applications and popularity. In order to maximize the harvesting and transmission opportunities offered by varying traffic sources of the H2H network, we adopt a Bayesian nonparametric (BNP) learning algorithm to classify traffic applications (patterns) for secondary transmitters (STs). We then analyze the performance of STs using the stochastic geometric approach, based on a criterion for optimal traffic selection. Because of the mathematical intractability of the optimal criterion, we have attained a suboptimal traffic selection criterion which provides more tractable analysis. Results are presented to validate the performance of the proposed BNP classification algorithm and the criterion, as well as the impact of traffic sources and popularity.
机译:随着新兴的互联网服务,将在不久的将来部署大规模的机器到机器(M2M)通信将在人对人(H2H)通信之上。由于M2M和H2H通信的共存,M2M(即次级)网络的性能主要取决于H2H(即,主要)网络。在本文中,我们提出了用于利用H2H网络的能量(信号)源的M2M网络的环境反向散射通信,参考其业务应用和流行度。为了最大限度地提高H2H网络的不同交通源提供的收获和传输机会,我们采用贝叶斯非参数(BNP)学习算法来对次级发射机(STS)的流量应用(模式)进行分类。然后,我们使用随机几何方法来分析STS的性能,基于最佳流量选择的标准。由于最佳标准的数学诡计,我们已经达到了次优流量选择标准,其提供了更具易诊的分析。提出了验证了建议的BNP分类算法的性能和标准的性能,以及交通源和流行的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号