首页> 外文期刊>IEEE transactions on mobile computing >Real-time mobility tracking algorithms for cellular networks based on Kalman filtering
【24h】

Real-time mobility tracking algorithms for cellular networks based on Kalman filtering

机译:基于卡尔曼滤波的蜂窝网络实时移动性跟踪算法

获取原文
获取原文并翻译 | 示例

摘要

We propose two algorithms for real-time tracking of the location and dynamic motion of a mobile station in a cellular network using the pilot signal strengths from neighboring base stations. The underlying mobility model is based on a dynamic linear system driven by a discrete command process that determines the mobile station's acceleration. The command process is modeled as a semi-Markov process over a finite set of acceleration levels. The first algorithm consists of an averaging filter for processing pilot signal, strength measurements and two Kalman filters, one to estimate the discrete command process and the other to estimate the mobility state. The second algorithm employs a single Kalman filter without prefiltering and is able to track a mobile station even when a limited set of pilot signal measurements is available. Both of the proposed tracking algorithms can be used to predict future mobility behavior, which can be, useful in resource allocation applications. Our numerical results show that the proposed tracking algorithms perform accurately over a wide range of mobility parameter values.
机译:我们提出了两种算法,可以使用相邻基站的导频信号强度实时跟踪蜂窝网络中移动站的位置和动态运动。基本的移动性模型基于动态线性系统,该系统由确定移动台加速度的离散命令过程驱动。在有限的一组加速度级别上,将命令过程建模为半马尔可夫过程。第一种算法由用于处理导频信号的平均滤波器,强度测量和两个卡尔曼滤波器组成,一个用于估计离散命令过程,另一个用于估计移动性状态。第二种算法采用单个卡尔曼滤波器而不进行预滤波,即使在有限的一组导频信号测量可用的情况下,也能够跟踪移动台。所提出的两种跟踪算法均可用于预测未来的移动性行为,这在资源分配应用程序中可能会很有用。我们的数值结果表明,提出的跟踪算法可以在很宽的迁移率参数值范围内准确执行。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号