首页> 外文期刊>IEEE transactions on mobile computing >Protecting Location Privacy with Personalized k-Anonymity: Architecture and Algorithms
【24h】

Protecting Location Privacy with Personalized k-Anonymity: Architecture and Algorithms

机译:使用个性化k匿名性保护位置隐私:体系结构和算法

获取原文
获取原文并翻译 | 示例

摘要

Continued advances in mobile networks and positioning technologies have created a strong market push for location-based applications. Examples include location-aware emergency response, location-based advertisement, and location-based entertainment. An important challenge in wide deployment of location-based services (LBSs) is the privacy-aware management of location information, providing safeguards for location privacy of mobile clients against vulnerabilities for abuse. This paper describes a scalable architecture for protecting location privacy from various privacy threats resulting from uncontrolled usage of LBSs. This architecture includes the development of a personalized location anonymization model and a suite of location perturbation algorithms. A unique characteristic of our location privacy architecture is the use of a flexible privacy personalization framework to support location k-anonymity for a wide range of mobile clients with context-sensitive privacy requirements. This framework enables each mobile client to specify the minimum level of anonymity it desires and the maximum temporal and spatial tolerances it is willing to accept when requesting for k-anonymity preserving LBSs. We devise an efficient message perturbation engine to implement the proposed location privacy framework. The prototype we develop is designed to be run by the anonymity server on a trusted platform and performs location anonymization on LBS request messages of mobile clients, such as identity removal and spatio-temporal cloaking of location information. We study the effectiveness of our location cloaking algorithms under various conditions using realistic location data that is synthetically generated from real road maps and traffic volume data. Our experiments show that the personalized location k-anonymity model together with our location perturbation engine can achieve high resilience to location privacy threats without introducing any significant performance penalty.
机译:移动网络和定位技术的不断发展为基于位置的应用程序创造了强大的市场推动力。示例包括位置感知的紧急响应,基于位置的广告和基于位置的娱乐。广泛部署基于位置的服务(LBS)的一个重要挑战是位置信息的隐私感知管理,这为移动客户端的位置隐私提供了防范滥用漏洞的保护措施。本文介绍了一种可伸缩的体系结构,用于保护位置隐私免遭LBS不受控制的使用所导致的各种隐私威胁。该架构包括个性化位置匿名化模型和一组位置扰动算法的开发。我们的位置隐私体系结构的一个独特特征是,使用灵活的隐私个性化框架来支持具有上下文相关隐私要求的各种移动客户端的位置k-匿名性。该框架使每个移动客户端可以指定其所需的最小匿名级别,以及在请求保留k匿名的LBS时愿意接受的最大时间和空间容限。我们设计了一种有效的消息微扰引擎来实现建议的位置隐私框架。我们开发的原型旨在由匿名服务器在可信任的平台上运行,并对移动客户端的LBS请求消息执行位置匿名处理,例如身份删除和位置信息的时空隐匿。我们使用从真实道路地图和交通量数据综合生成的真实位置数据,研究了在各种条件下我们的位置隐匿算法的有效性。我们的实验表明,个性化的位置k-匿名模型与我们的位置扰动引擎一起可以实现对位置隐私威胁的高度抵御能力,而不会造成任何明显的性能损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号