首页> 外文期刊>IEEE transactions on mobile computing >RF Fingerprints Prediction for Cellular Network Positioning: A Subspace Identification Approach
【24h】

RF Fingerprints Prediction for Cellular Network Positioning: A Subspace Identification Approach

机译:蜂窝网络定位的射频指纹预测:子空间识别方法

获取原文
获取原文并翻译 | 示例

摘要

Cellular network positioning is a mandatory requirement for localizing emergency callers, such as E911 in North America. Although smartphones are normally equipped with GPS modules, there are still a large number of users with cell phones only as basic devices, and GPS could be ineffective in urban canyon environments. To this end, the RF fingerprints based positioning mechanism is incorporated into LTE architecture by 3GPP, where the major challenge is to collect geo-tagged RF fingerprints in vast areas. This paper proposes to utilize the subspace identification approach for large-scale RF fingerprints prediction. We formulate the problem into the problem of finding the optimal subspace over Stiefel manifold, and redesign the Stiefel-manifold optimization method with fast convergence rate. Moreover, we propose a sliding window mechanism for the practical large-scale fingerprints prediction scenario, where recorded fingerprints are unevenly distributed in the vast area. Combining the two proposed mechanisms enables an efficient method of large-scale fingerprints prediction in the city level. Further, we validate our theoretical analysis and proposed mechanisms by conducting experiments with real mobile data, which shows that the resulted localization accuracy and reliability with our predicted fingerprints exceed the requirement of E911.
机译:蜂窝网络定位是本地化紧急呼叫者(如北美的E911)的强制性要求。尽管智能手机通常配备了GPS模块,但是仍有大量用户仅将手机用作基本设备,而GPS在城市峡谷环境中可能无效。为此,基于射频指纹的定位机制已被3GPP集成到LTE体系结构中,其中的主要挑战是在广大地区收集带有地理标签的射频指纹。本文提出利用子空间识别方法进行大规模RF指纹预测。我们将该问题公式化为在Stiefel流形上找到最佳子空间的问题,然后重新设计具有快速收敛速度的Stiefel流形优化方法。此外,我们针对实际的大规模指纹预测场景提出了一种滑动窗口机制,其中记录的指纹在广阔的区域中分布不均。结合这两种提议的机制,可以在城市一级实现大规模指纹预测的有效方法。此外,我们通过对真实的移动数据进行实验来验证我们的理论分析和提出的机制,这表明使用我们预测的指纹获得的定位精度和可靠性超出了E911的要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号