首页> 外文期刊>Mobile Computing, IEEE Transactions on >When In-Network Processing Meets Time: Complexity and Effects of Joint Optimization in Wireless Sensor Networks
【24h】

When In-Network Processing Meets Time: Complexity and Effects of Joint Optimization in Wireless Sensor Networks

机译:当网络内处理遇到时间时:无线传感器网络中的复杂性和联合优化的影响

获取原文
获取原文并翻译 | 示例

摘要

As sensornets are increasingly being deployed in mission-critical applications, it becomes imperative that we consider application QoS requirements in in-network processing (INP). Toward understanding the complexity of joint QoS and INP optimization, we study the problem of jointly optimizing packet packing (i.e., aggregating shorter packets into longer ones) and the timeliness of data delivery. We identify the conditions under which the problem is strong NP-hard, and we find that the problem complexity heavily depends on aggregation constraints (in particular, maximum packet size and reaggregation tolerance) instead of network and traffic properties. For cases when the problem is NP-hard, we show that there is no polynomial-time approximation scheme (PTAS); for cases when the problem can be solved in polynomial time, we design polynomial time, offline algorithms for finding the optimal packet packing schemes. To understand the impact of joint QoS and INP optimization on sensornet performance, we design a distributed, online protocol tPack that schedules packet transmissions to maximize the local utility of packet packing at each node. Using a testbed of 130 TelosB motes, we experimentally evaluate the properties of tPack. We find that jointly optimizing data delivery timeliness and packet packing and considering real-world aggregation constraints significantly improve network performance. Our findings shed light on the challenges, benefits, and solutions of joint QoS and INP optimization, and they also suggest open problems for future research.
机译:随着传感器网络越来越多地部署在关键任务应用中,当务之急是我们必须在网络内处理(INP)中考虑应用QoS要求。为了理解联合QoS和INP优化的复杂性,我们研究了联合优化数据包打包(即将较短的数据包聚合为较长的数据包)和数据传递的及时性的问题。我们确定了问题对NP的抵抗力强的条件,并且我们发现问题的复杂性在很大程度上取决于聚合约束(尤其是最大数据包大小和重新聚合容限),而不是网络和流量属性。对于问题是NP困难的情况,我们证明没有多项式时间近似方案(PTAS);对于可以在多项式时间内解决问题的情况,我们设计了多项式时间离线算法来寻找最佳的数据包打包方案。为了了解QoS和INP联合优化对sensornet性能的影响,我们设计了一种分布式在线协议tPack,该协议可调度数据包传输,以最大化每个节点上数据包打包的本地效用。使用130个TelosB微粒的测试平台,我们通过实验评估了tPack的属性。我们发现,共同优化数据交付的及时性和数据包打包,并考虑实际的聚合约束条件,可以显着提高网络性能。我们的发现揭示了QoS和INP联合优化的挑战,好处和解决方案,也为未来的研究提出了未解决的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号