首页> 外文期刊>Mobile Computing, IEEE Transactions on >Energy Consumption Optimization for Multihop Cognitive Cellular Networks
【24h】

Energy Consumption Optimization for Multihop Cognitive Cellular Networks

机译:多跳认知蜂窝网络的能耗优化

获取原文
获取原文并翻译 | 示例

摘要

Cellular networks are faced with serious congestions nowadays due to the recent booming growth and popularity of wireless devices and applications. Opportunistically accessing the unused licensed spectrum, cognitive radio can potentially harvest more spectrum resources and enhance the capacity of cellular networks. In this paper, we propose a new multihop cognitive cellular network (MCN) architecture to facilitate the ever exploding data transmissions in cellular networks. Under the proposed architecture, we then investigate the minimum energy consumption problem by exploring joint frequency allocation, link scheduling, routing, and transmission power control. Specifically, we first formulate a maximum independent set (MIS) based energy consumption optimization problem, which is a non-linear programming problem. Different from most previous work assuming all the MISs are known, finding which is in fact NP-complete, we employ a column generation based approach to circumvent this problem. We develop an -bounded algorithm, which can obtain a feasible solution that are less than and larger than of the optimal result of MP, and analyzed its computational complexity. We also revisit the minimum energy consumption problem by taking uncertain channel bandwidth into consideration. Simulation results show that we c- n efficiently find -bounded approximate results and the optimal result as well.
机译:由于无线设备和应用的近来蓬勃发展和普及,如今蜂窝网络面临严重的拥塞。认知无线电机会性地访问未使用的许可频谱,可以潜在地收获更多的频谱资源并增强蜂窝网络的容量。在本文中,我们提出了一种新的多跳认知蜂窝网络(MCN)架构,以促进蜂窝网络中不断增长的数据传输。在提出的架构下,我们然后通过探索联合频率分配,链路调度,路由和传输功率控制来研究最小能耗问题。具体来说,我们首先制定基于最大独立集(MIS)的能耗优化问题,这是一个非线性规划问题。与大多数先前的工作(假设所有MIS都是已知的)不同,发现实际上是NP完全的,我们采用基于列生成的方法来规避此问题。我们开发了一种有界算法,可以得到小于和大于MP最优结果的可行解,并分析了其计算复杂度。我们还通过考虑不确定的信道带宽来重新考虑最低能耗问题。仿真结果表明,我们可以高效地找到有界的近似结果和最优结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号