首页> 外文期刊>IEEE transactions on mobile computing >A Reliability-Augmented Particle Filter for Magnetic Fingerprinting Based Indoor Localization on Smartphone
【24h】

A Reliability-Augmented Particle Filter for Magnetic Fingerprinting Based Indoor Localization on Smartphone

机译:基于智能指纹的智能手机室内定位可靠性增强型粒子滤波器

获取原文
获取原文并翻译 | 示例

摘要

Using magnetic field data as fingerprints for smartphone indoor positioning has become popular in recent years. Particle filter is often used to improve accuracy. However, most of existing particle filter based approaches either are heavily affected by motion estimation errors, which result in unreliable systems, or impose strong restrictions on smartphone such as fixed phone orientation, which are not practical for real-life use. In this paper, we present a novel indoor positioning system for smartphones, which is built on our proposed reliability-augmented particle filter. We create several innovations on the motion model, the measurement model, and the resampling model to enhance the basic particle filter. To minimize errors in motion estimation and improve the robustness of the basic particle filter, we propose a dynamic step length estimation algorithm and a heuristic particle resampling algorithm. We use a hybrid measurement model, combining a new magnetic fingerprinting model and the existing magnitude fingerprinting model, to improve system performance, and importantly avoid calibrating magnetometers for different smartphones. In addition, we propose an adaptive sampling algorithm to reduce computation overhead, which in turn improves overall usability tremendously. Finally, we also analyze the “Kidnapped Robot Problem” and present a practical solution. We conduct comprehensive experimental studies, and the results show that our system achieves an accuracy of 1$sim$ 2 m on average in a large building.
机译:近年来,使用磁场数据作为智能手机室内定位的指纹已变得很流行。粒子过滤器通常用于提高精度。但是,大多数现有的基于粒子过滤器的方法要么受到运动估计错误的严重影响(导致系统不可靠),要么对智能手机施加了严格的限制,例如固定电话方向,这在现实生活中并不实用。在本文中,我们提出了一种用于智能手机的新型室内定位系统,该系统基于我们提出的可靠性增强型粒子滤波器。我们在运动模型,测量模型和重采样模型上进行了一些创新,以增强基本的粒子滤波器。为了最小化运动估计中的误差并提高基本粒子滤波器的鲁棒性,我们提出了动态步长估计算法和启发式粒子重采样算法。我们使用混合测量模型,将新的磁性指纹模型和现有的幅度指纹模型相结合,以提高系统性能,并且重要的是避免针对不同的智能手机校准磁力计。此外,我们提出了一种自适应采样算法来减少计算开销,从而极大地提高了总体可用性。最后,我们还分析了“绑架机器人问题”并提出了实用的解决方案。我们进行了全面的实验研究,结果表明我们的系统在大型建筑物中平均达到1 $ sim $ 2m的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号