首页> 外文期刊>IEEE transactions on mobile computing >To Relay or Not to Relay: Learning Device-to-Device Relaying Strategies in Cellular Networks
【24h】

To Relay or Not to Relay: Learning Device-to-Device Relaying Strategies in Cellular Networks

机译:中继还是不中继:学习蜂窝网络中的设备到设备中继策略

获取原文
获取原文并翻译 | 示例

摘要

We consider a cellular network where mobile transceiver devices that are owned by self-interested users are incentivized to cooperate with each other using tokens, which they exchange electronically to “buy” and “sell” downlink relay services, thereby increasing the network's capacity compared to a network that only supports base station-to-device (B2D) communications. We investigate how an individual device in the network can learn its optimal cooperation policy , which it uses to decide whether or not to provide downlink relay services for other devices in exchange for tokens. We propose a supervised learning algorithm that devices can deploy to learn their optimal cooperation strategies online given their experienced network environment. We then systematically evaluate the learning algorithm in various deployment scenarios. Our simulation results suggest that devices have the greatest incentive to cooperate when the network contains (i) many devices with high energy budgets for relaying, (ii) many highly mobile users (e.g., users in motor vehicles), and (iii) neither too few nor too many tokens. Additionally, within the token system, self-interested devices can effectively learn to cooperate online, and achieve up to 20 percent throughput gains on average compared to B2D communications alone, all while selfishly maximizing their own utilities.
机译:我们考虑一个蜂窝网络,其中激励有兴趣的用户拥有的移动收发器设备使用令牌相互合作,令牌通过电子方式交换以“购买”和“出售”下行链路中继服务,从而与仅支持基站到设备(B2D)通信的网络。我们研究了网络中的单个设备如何学习其最佳协作策略,该策略用于确定是否为其他设备提供下行链路中继服务以交换令牌。我们提出了一种监督学习算法,设备可以部署以在给定其经验丰富的网络环境的情况下在线学习其最佳协作策略。然后,我们在各种部署方案中系统地评估学习算法。我们的仿真结果表明,当网络包含(i)许多具有高能量预算用于中继的设备,(ii)许多高度移动的用户(例如,汽车用户)以及(iii)两者都不包含时,设备具有最大的合作动机。令牌很少或太多。此外,在令牌系统中,自私设备可以有效地学习在线合作,与仅使用B2D通信相比,平均可以实现高达20%的吞吐量增长,同时自私地最大化其自身的效用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号