首页> 外文期刊>Mobile Computing, IEEE Transactions on >Robust Ergodic Uplink Resource Allocation in Underlay OFDMA Cognitive Radio Networks
【24h】

Robust Ergodic Uplink Resource Allocation in Underlay OFDMA Cognitive Radio Networks

机译:底层OFDMA认知无线电网络中的稳健遍历上行资源分配

获取原文
获取原文并翻译 | 示例

摘要

The ergodic resource allocation (ERA) problem for uplink transmission in underlay cognitive radio networks (CRNs) is investigated. The objective is to maximize the ergodic sum-rate of secondary users (SUs) considering the unavailability of perfect channel state information (CSI), and subject to transmit power limitations of SUs, and the interference threshold constraint to guarantee the quality of service of primary users. Since with average-based formulation of ERA, the interference threshold constraint and transmit power limitations of SUs do not hold instantaneously, one can replace the average-based constraints in ERA with their outage-based counterparts. For the uncertainty on the CSI values, we utilize the robust optimization theory where the uncertain parameters are modeled as a sum of the estimated value and error which is assumed to be bounded. We then map the considered ERA problems to their robust counterparts. Generally, the robust approaches degrade the performance (e.g., sum rate of SU), as they conservatively consider the error to be in the maximum extent and try to preserve the constrains under any condition of error (worst-case scenario). We aim to moderate this effect by using appropriate models for uncertain parameters, relaxing the worst-case scenario, and stochastically preserving the constraints. Moreover, robust problems are in general non-convex and suffer from high computational complexity due to the existence of uncertain system parameters. Therefore, we use effective suboptimal approaches to solve them with a reasonable complexity. This includes methods based on chance constraint approach as well as an iterative scheme. The proposed solutions provide a trade-off between robustness, performance, and complexity. Simulation results reveal that by using the proposed schemes, stable sum-rate of SUs in the presence of CSI uncertainties can be achieved while the instantaneous power and interference constraints are met with a desired probability.
机译:研究了底层认知无线电网络(CRN)中用于上行链路传输的遍历资源分配(ERA)问题。目的是在没有完美信道状态信息(CSI)的情况下,最大化次要用户(SU)的遍历总速率,并受SU的发射功率限制,以及干扰阈值约束,以确保主要用户的服务质量用户。由于使用ERA的基于平均的公式表示,SU的干扰阈值约束和发射功率限制不会立即成立,因此可以用基于中断的对应对象替换ERA中的基于平均的约束。对于CSI值的不确定性,我们使用鲁棒的优化理论,其中不确定性参数被建模为估计值和假定为有界误差之和。然后,我们将考虑的ERA问题映射到其健壮的副本。通常,稳健的方法会降低性能(例如SU的总和),因为它们保守地认为误差在最大程度上,并试图在任何误差条件下(最坏情况)保留约束。我们旨在通过对不确定的参数使用适当的模型,减轻最坏情况的情况并随机保存约束来减轻这种影响。此外,鲁棒性问题通常是非凸性的,并且由于不确定的系统参数的存在而遭受高计算复杂度的困扰。因此,我们使用有效的次优方法以合理的复杂度解决它们。这包括基于机会约束方法的方法以及迭代方案。所提出的解决方案在健壮性,性能和复杂性之间进行权衡。仿真结果表明,通过所提出的方案,可以在存在CSI不确定性的情况下,以期望的概率满足瞬时功率和干扰约束条件,实现SU的稳定求和率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号