首页> 外文期刊>Mobile Computing, IEEE Transactions on >SenSpeed: Sensing Driving Conditions to Estimate Vehicle Speed in Urban Environments
【24h】

SenSpeed: Sensing Driving Conditions to Estimate Vehicle Speed in Urban Environments

机译:SenSpeed:感知驾驶条件以估计城市环境中的车速

获取原文
获取原文并翻译 | 示例

摘要

Acquiring instant vehicle speed is desirable and a corner stone to many important vehicular applications. This paper utilizes smartphone sensors to estimate the vehicle speed, especially when GPS is unavailable or inaccurate in urban environments. In particular, we estimate the vehicle speed by integrating the accelerometer’s readings over time and find the acceleration errors can lead to large deviations between the estimated speed and the real one. Further analysis shows that the changes of acceleration errors are very small over time which can be corrected at some points, called , where the true vehicle speed can be estimated. Recognizing this observation, we propose an accurate vehicle speed estimation system, SenSpeed, which senses natural driving conditions in urban environments including , , and , to derive reference points and further eliminates the speed estimation deviations caused by acceleration errors. Extensive experiments demonstrate that SenSpeed is accurate and robust in real driving environments. On average, the real-time speed estimation error on local road is , and the offline speed estimation error is as low as km/h. Whereas the average error of GPS is and
机译:获得即时的车辆速度是理想的,并且对于许多重要的车辆应用来说,这也是基石。本文利用智能手机传感器来估计车速,尤其是在城市环境中无法使用GPS或GPS不精确的情况下。特别是,我们通过对加速度计的读数随时间进行积分来估算车速,并发现加速度误差会导致估算的速度与实际速度之间出现较大的偏差。进一步的分析表明,加速度误差随时间的变化很小,可以在某些点上进行校正,可以估计真实的车速。认识到这一点,我们提出了一种精确的车速估算系统SenSpeed,该系统可感测包括,和在内的城市环境中的自然驾驶状况,以得出参考点,并进一步消除由加速度误差引起的车速估算偏差。大量的实验表明,SenSpeed在实际驾驶环境中是准确而强大的。平均而言,本地道路上的实时速度估计误差为,离线速度估计误差低至km / h。而GPS的平均误差为

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号