首页> 外文期刊>IEEE transactions on mobile computing >Mode Selection and Resource Allocation in Device-to-Device Communications: A Matching Game Approach
【24h】

Mode Selection and Resource Allocation in Device-to-Device Communications: A Matching Game Approach

机译:设备到设备通信中的模式选择和资源分配:一种匹配博弈方法

获取原文
获取原文并翻译 | 示例

摘要

Device to device (D2D) communication is considered as an effective technology for enhancing the spectral efficiency and network throughput of existing cellular networks. However, enabling it in an underlay fashion poses a significant challenge pertaining to interference management. In this paper, mode selection and resource allocation for an underlay D2D network is studied while simultaneously providing interference management. The problem is formulated as a combinatorial optimization problem whose objective is to maximize the utility of all D2D pairs. To solve this problem, a learning framework is proposed based on a problem-specific Markov chain. From the local balance equation of the designed Markov chain, the transition probabilities are derived for distributed implementation. Then, a novel two phase algorithm is developed to perform mode selection and resource allocation in the respective phases. This algorithm is then shown to converge to a near optimal solution. Moreover, to reduce the computation in the learning framework, two resource allocation algorithms based on matching theory are proposed to output a specific and deterministic solution. The first algorithm employs the one-to-one matching game approach whereas in the second algorithm, the one-to many matching game with externalities and dynamic quota is employed. Simulation results show that the proposed framework converges to a near optimal solution under all scenarios with probability one. Moreover, our results show that the proposed matching game with externalities achieves a performance gain of up to 35 percent in terms of the average utility compared to a classical matching scheme with no externalities.
机译:设备到设备(D2D)通信被视为提高现有蜂窝网络的频谱效率和网络吞吐量的有效技术。但是,以底层方式启用它带来了与干扰管理有关的重大挑战。在本文中,研究了底层D2D网络的模式选择和资源分配,同时提供干扰管理。该问题被表述为组合优化问题,其目标是最大化所有D2D对的效用。为了解决这个问题,提出了一个基于特定问题的马尔可夫链的学习框架。从设计的马尔可夫链的局部平衡方程中,可以得出用于分布式实现的转移概率。然后,开发了新颖的两阶段算法以在各个阶段中进行模式选择和资源分配。然后显示该算法收敛到接近最优的解决方案。此外,为了减少学习框架中的计算量,提出了两种基于匹配理论的资源分配算法,以输出特定的确定性解决方案。第一种算法采用一对一匹配博弈方法,而第二种算法则采用具有外部性和动态配额的一对多匹配博弈。仿真结果表明,所提出的框架在概率为1的所有情况下均收敛至接近最优解。此外,我们的结果表明,与没有外部性的经典匹配方案相比,具有外部性的拟议匹配游戏在平均效用方面实现了高达35%的性能提升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号