首页> 外文期刊>IEEE transactions on mobile computing >A Prediction-Based User Selection Framework for Heterogeneous Mobile CrowdSensing
【24h】

A Prediction-Based User Selection Framework for Heterogeneous Mobile CrowdSensing

机译:基于预测的异构移动人群感知用户选择框架

获取原文
获取原文并翻译 | 示例

摘要

Mobile CrowdSensing is a new paradigm in which requesters launch tasks to the mobile users who provide the sensing services. The tasks, in practice, are usually heterogeneous (have diverse spatial-temporal requirements), which make it hard to select an efficient subset of users to perform the tasks. In this paper, we present a point of interest (PoI) based mobility prediction model to obtain the probabilities that tasks would be completed by users. Based on it, we propose a greedy offline algorithm to select a set of users under a participant number constraint. Furthermore, we extend the user selection problem to a more realistic online setting where users come in real time and we decide to select or not immediately. We formulate the problem as a submodular k-secretaries problem and propose an online algorithm. Finally, we design a distributed user selection framework Crowd UserS and implement an Android prototype system as proof of the concept. Extensive simulations have been conducted on three real-life mobile traces and the results prove the efficiency of our proposed framework.
机译:Mobile CrowdSensing是一种新的范例,请求者可以向提供传感服务的移动用户启动任务。实际上,任务通常是异构的(具有不同的时空要求),这使得很难选择有效的用户子集来执行任务。在本文中,我们提出了一种基于兴趣点(PoI)的移动性预测模型,以获取用户可以完成任务的可能性。基于此,我们提出了一种贪婪的离线算法,以在参与者人数约束下选择一组用户。此外,我们将用户选择问题扩展到更实时的在线设置,其中用户实时出现,因此我们决定立即选择还是不选择。我们将该问题表述为子模k秘书问题​​,并提出一种在线算法。最后,我们设计了一个分布式用户选择框架Crowd UserS并实现了一个Android原型系统作为该概念的证明。在三个真实的移动轨迹上进行了广泛的仿真,结果证明了我们提出的框架的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号