首页> 外文期刊>IEEE transactions on mobile computing >An Efficient Prediction-Based User Recruitment for Mobile Crowdsensing
【24h】

An Efficient Prediction-Based User Recruitment for Mobile Crowdsensing

机译:一种基于预测的高效移动招募用户

获取原文
获取原文并翻译 | 示例

摘要

Mobile crowdsensing is a new paradigm in which a group of mobile users exploit their smart devices to cooperatively perform a large-scale sensing job. One of the users' main concerns is the cost of data uploading, which affects their willingness to participate in a crowdsensing task. In this paper, we propose an efficient Prediction-based User Recruitment for mobile crowdsEnsing (PURE), which separates the users into two groups corresponding to different price plans: Pay as you go (PAYG) and Pay monthly (PAYM). By regarding the PAYM users as destinations, the minimizing cost problem goes to recruiting the users that have the largest contact probability with a destination. We first propose a semi-Markov model to determine the probability distribution of user arrival time at points of interest (PoIs) and then get the inter-user contact probability. Next, an efficient prediction-based user-recruitment strategy for mobile crowdsensing is proposed to minimize the data uploading cost. We then propose PURE-DF by extending PURE to a case in which we address the tradeoff between the delivery ratio of sensing data and the recruiter number according to Delegation Forwarding. We conduct extensive simulations based on three widely-used real-world traces: roma/taxi, epfl, and geolife. The results show that, compared with other recruitment strategies, PURE achieves a lower recruitment payment and PURE-DF achieves the highest delivery efficiency.
机译:移动人群感应是一种新的范例,其中一群移动用户利用他们的智能设备来协作执行大规模感应工作。用户主要关注的问题之一是数据上传的成本,这会影响他们参与众筹任务的意愿。在本文中,我们为移动人群Ensing(PURE)提出了一种有效的基于预测的用户招聘,它将用户分为两组,分别对应于不同的价格计划:即付即用(PAYG)和按月支付(PAYM)。通过将PAYM用户视为目的地,将成本问题降到最低程度的目的是招募与目的地具有最大联系概率的用户。我们首先提出一个半马尔可夫模型,以确定用户到达兴趣点(PoI)的时间的概率分布,然后得出用户之间的联系概率。接下来,提出了一种有效的基于预测的移动人群感知用户招募策略,以最小化数据上传成本。然后,我们通过将PURE扩展到一种情况来提出PURE-DF,在这种情况下,我们将根据“委托转发”解决感测数据的交付率与招聘者人数之间的权衡问题。我们根据三种广泛使用的真实世界轨迹进行广泛的仿真:罗马/出租车,epfl和地球生命。结果表明,与其他招聘策略相比,PURE的招聘费用更低,PURE-DF的交付效率最高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号