首页> 外文期刊>Mobile Computing, IEEE Transactions on >Multi-Task Allocation in Mobile Crowd Sensing with Individual Task Quality Assurance
【24h】

Multi-Task Allocation in Mobile Crowd Sensing with Individual Task Quality Assurance

机译:具有个人任务质量保证的移动人群感知中的多任务分配

获取原文
获取原文并翻译 | 示例

摘要

Task allocation is a fundamental research issue in mobile crowd sensing. While earlier research focused mainly on single tasks, recent studies have started to investigate multi-task allocation, which considers the interdependency among multiple tasks. A common drawback shared by existing multi-task allocation approaches is that, although the overall utility of multiple tasks is optimized, the sensing quality of individual tasks may become poor as the number of tasks increases. To overcome this drawback, we re-define the multi-task allocation problem by introducing task-specific minimal sensing quality thresholds, with the objective of assigning an appropriate set of tasks to each worker such that the overall system utility is maximized. Our new problem also takes into account the maximum number of tasks allowed for each worker and the sensor availability of each mobile device. To solve this newly-defined problem, this paper proposes a novel multi-task allocation framework named MTasker. Different from previous approaches which start with an empty set and iteratively select task-worker pairs, MTasker adopts a descent greedy approach, where a quasi-optimal allocation plan is evolved by removing a set of task-worker pairs from the full set. Extensive evaluations based on real-world mobility traces show that MTasker outperforms the baseline methods under various settings, and our theoretical analysis proves that MTasker has a good approximation bound.
机译:任务分配是移动人群感知中的基础研究问题。早期的研究主要集中于单个任务,而最近的研究已经开始研究多任务分配,这种分配考虑了多个任务之间的相互依赖性。现有的多任务分配方法的共同缺点是,尽管优化了多个任务的整体效用,但是随着任务数量的增加,单个任务的传感质量可能会变差。为了克服此缺点,我们通过引入特定于任务的最小感测质量阈值来重新定义多任务分配问题,目的是为每个工作人员分配一组适当的任务,以使整个系统的效用最大化。我们的新问题还考虑了每个工作人员所允许的最大任务数以及每个移动设备的传感器可用性。为了解决这个新定义的问题,本文提出了一种新颖的多任务分配框架MTasker。与以前的方法以空集开始并反复选择任务工对的方法不同,MTasker采用了后裔贪婪方法,其中通过从整个集合中删除一组任务工对来制定准最优分配计划。根据现实世界的移动轨迹进行的广泛评估表明,MTasker在各种设置下均优于基线方法,并且我们的理论分析证明,MTasker具有良好的近似范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号