首页> 外文期刊>IEEE transactions on mobile computing >Privacy Preserving Utility-Aware Mechanism for Data Uploading Phase in Participatory Sensing
【24h】

Privacy Preserving Utility-Aware Mechanism for Data Uploading Phase in Participatory Sensing

机译:参与感知中数据上传阶段的隐私保护实用程序感知机制

获取原文
获取原文并翻译 | 示例

摘要

Participatory-sensing systems leverage mobile phones to offer unprecedented services that improve users' quality of life. However, the data collection process may compromise participants' privacy when reporting measurements tagged or correlated with their sensitive information. Therefore, existing privacy-preserving techniques introduce data perturbation, which ensures privacy guarantees, yet at the cost of a loss of data utility, a major concern for queriers. Different from past works, we assess simultaneously the two competing goals of ensuring data quality for queriers and protecting participants' privacy. We propose a general privacy-preserving mechanism to capture the privacy inference threat encountered by a participant while considering utility requirements set by data queriers. We rely on a general probabilistic privacy mechanism, which is run on a trust-worthy entity to distort the collected data before its release. We consider two different adversary models and propose appropriate solutions for the both of them. Furthermore, we tackle the challenge of participatory collected data with large size alphabets by investigating quantization techniques. The proposed PRivacy-preserving Utility-aware Mechanism, PRUM, was evaluated on three different real datasets while varying the distribution of the collected data and the obfuscation type. The obtained results demonstrate that, for different applications, a limited distortion may ensure the participants' privacy while maintaining about 98 percent of the required data utility.
机译:参与式传感系统利用移动电话来提供前所未有的服务,从而改善用户的生活质量。但是,当报告与他们的敏感信息标记或相关的测量时,数据收集过程可能会损害参与者的隐私。因此,现有的隐私保护技术引入了数据扰动,这确保了隐私保障,但以丢失数据实用性为代价,这是查询器的主要问题。与以往的作品不同,我们同时评估了两个相互竞争的目标,即确保查询者的数据质量和保护参与者的隐私。我们提出一种通用的隐私保护机制,在考虑数据查询者设置的实用程序要求的同时,捕获参与者遇到的隐私推断威胁。我们依赖于一般的概率隐私机制,该机制在可信赖的实体上运行,以在收集的数据发布之前对收集的数据进行扭曲。我们考虑了两种不同的对手模型,并针对两者提出了适当的解决方案。此外,我们通过研究量化技术来解决大型字母参与式收集数据的挑战。在改变收集的数据的分布和混淆类型的同时,对三个不同的真实数据集评估了提议的PRivacy-tserving Utility-aware机制PRUM。获得的结果表明,对于不同的应用程序,有限的失真可以确保参与者的隐私,同时保持所需数据实用程序的98%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号