首页> 外文期刊>IEEE transactions on mobile computing >Traffic-Aware Sensor Grouping for IEEE 802.11ah Networks: Regression Based Analysis and Design
【24h】

Traffic-Aware Sensor Grouping for IEEE 802.11ah Networks: Regression Based Analysis and Design

机译:IEEE 802.11ah网络的流量感知传感器分组:基于回归的分析和设计

获取原文
获取原文并翻译 | 示例

摘要

Traditional IEEE 802.11 network is designed for the use of small scale local wireless networks. However, the emergence of the Internet of Things (loT) has changed the scene of wireless communications. Thus, recently, the IEEE task group ah (TGah) has been dedicated to the standardization of a new protocol, called IEEE 802.11ah, which is customized for this type of large-scale networks. IEEE 802.11ah adopts a grouping-based MAC protocol to reduce the contention overhead for each group of devices. However, most existing designs simply randomly partition devices into groups, and less attention has been paid to the problem of forming efficient groups. Therefore, in this paper, we argue that the performance of grouping is closely related to heterogeneity in traffic demands of devices, and propose a traffic-aware grouping algorithm to improve channel utilization. Since channel utilization of a group closely depends on the collision probability, we further derive a regression-based analytical model to estimate the contention success probability with consideration of sensors' heterogeneous traffic demands. The evaluation via NS-3 simulations shows that the proposed regression-based model is quite accurate even when clients have diverse traffic demands, and our traffic-aware grouping outperforms other baseline approaches, especially when the network is nearly saturated.
机译:传统的IEEE 802.11网络是为使用小型本地无线网络而设计的。但是,物联网(loT)的出现改变了无线通信的场景。因此,近来,IEEE任务组ah(TGah)致力于标准化称为IEEE 802.11ah的新协议的标准化,该协议是针对此类大型网络而定制的。 IEEE 802.11ah采用基于分组的MAC协议,以减少每组设备的争用开销。但是,大多数现有设计只是简单地将设备随机分组,而对形成有效组的问题关注较少。因此,在本文中,我们认为分组的性能​​与设备流量需求中的异构性密切相关,并提出了一种流量感知分组算法来提高信道利用率。由于组的信道利用率密切取决于冲突概率,因此我们进一步推导了基于回归的分析模型,以考虑传感器的异类流量需求来估计竞争成功概率。通过NS-3仿真进行的评估表明,即使客户具有不同的流量需求,并且基于流量的分组方法也优于其他基准方法,尤其是在网络接近饱和时,所提出的基于回归的模型仍然非常准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号