首页> 外文期刊>Microprocessors and microsystems >PGOpt: Multi-objective design space exploration framework for large-Scale on-chip power grid design in VLSI SoC using evolutionary computing technique
【24h】

PGOpt: Multi-objective design space exploration framework for large-Scale on-chip power grid design in VLSI SoC using evolutionary computing technique

机译:PGOPT:使用进化计算技术的VLSI SOC大型片上电网设计的多目标设计空间探索框架

获取原文
获取原文并翻译 | 示例

摘要

Design of the power grid network (PGN) of a VLSI chip is a challenging task because of the increase in network complexity. Due to the presence of resistances of the metal lines of the PGN, voltage drops occur in the form of IR drop, which can change the voltage level of underlying logic circuits, resulting in malfunction of the System-on-Chip (SoC). The IR drop also depends upon different reliability constraints, and violation of those constraints can deteriorate the IR drop much more. Subsequently, a significant objective while designing a PGN is to reduce the IR drop without violating the reliability constraints. IR drop also affects the timing of the critical path of the circuits. Over the past two decades, several works have been proposed to optimize the PGN by minimizing metal area considering the IR drop as a design constraint. One of the widely accepted IR drop minimization practices is by increasing the metal widths, which in turn increases the metal area. As a result, the area of the chip increases, which manifests that the primary design objectives, i.e., IR drop and metal routing area, are conflicting in nature. Therefore, these two conflicting design objectives need to be accommodated while designing the PGN in order to optimize the reliability and the yield of the chip. In this work, for the first time, we propose a multiobjective design space exploration framework for the power grid design, which deals with reliability and yield. We have studied various design aspects to determine a trade-off between these two critical conflicting design objectives by developing an optimization framework using the evolutionary algorithmic technique. Results on the standard power grid benchmarks demonstrate that our proposed framework helps in a reliable PGN design with high yield.
机译:由于网络复杂性的增加,VLSI芯片电网网络(PGN)的设计是一个具有挑战性的任务。由于存在PGN的金属线的电阻,IR下降的电压下降,可以改变底层逻辑电路的电压电平,从而导致系统上片(SOC)的故障。 IR Drop还取决于不同的可靠性限制,违反这些限制可能会使IR降低更多。随后,设计PGN的显着物理是减少IR下降而不违反可靠性约束。 IR Drop也影响电路的临界路径的定时。在过去的二十年中,已经提出了几项作品来通过将金属区域最小化考虑IR Drop作为设计约束来优化PGN。广泛接受的IR降最小化实践之一是通过增加金属宽度,这又增加了金属区域。结果,芯片的面积增加,这表明主要设计目标,即IR下拉和金属路由区域在自然界中都是相互冲突的。因此,需要在设计PGN的同时进行这两个冲突的设计目标,以便优化芯片的可靠性和产量。在这项工作中,我们首次提出了一种用于电网设计的多目标设计空间探索框架,这涉及可靠性和产量。我们研究了各种设计方面,通过使用进化算法技术开发优化框架来确定这两个关键的冲突设计目标之间的权衡。结果标准电网基准测试表明,我们所提出的框架有助于高产的可靠PGN设计。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号