首页> 外文期刊>Microprocessors and microsystems >IoT-Edge Communication Protocol based on Low Latency for effective Data Flow and Distributed Neural Network in a Big Data Environment
【24h】

IoT-Edge Communication Protocol based on Low Latency for effective Data Flow and Distributed Neural Network in a Big Data Environment

机译:基于大数据环境中有效数据流量和分布式神经网络的低延迟的IoT边缘通信协议

获取原文
获取原文并翻译 | 示例

摘要

The sky-scraping increase in computer power includes in-depth study for all. In-depth learning provides accurate information at all times compared to other learning algorithms. Then, the Internet of Things (IoT) has grown in popularity in the field, for example, smart cities, exploration of oil, communications, etc. Edge / Fog IT support solve major challenges faced by the Internet of Things such as internet bandwidth, latency, and fixed network connection. Edge computing is spreading in a virtual environment, which requires a lot of time for machine learning. This paper aims to integrate the flow of data and disseminate the IoT Edge environment to reduce exploration and increase reliability from the data generation point of view. Based on this, a Troubleshooting of the Distributed Neural Network Model (DF-DDNN) was developed from the model of IoT Edge for the largest environment Data. Our suggested technique reduces latency by almost 33% compared to the long-developed cloud model of the Internet of Things.
机译:计算机电源的天空刮削增加包括对所有人的深入研究。与其他学习算法相比,深入学习可以随时提供准确的信息。然后,物联网(物联网)在该领域的普及中生长,例如,智能城市,石油,通信等探索。边缘/雾IT支持解决互联网带宽等内容互联网面临的主要挑战,延迟和固定网络连接。边缘计算正在虚拟环境中传播,这需要大量的机器学习时间。本文旨在集成数据流并传播物联网边缘环境,以减少数据生成的视图中的探索和提高可靠性。基于此,从IOT边缘模型开发了分布式神经网络模型(DF-DDNN)的故障排除,以获得最大的环境数据。与互联网互联网的长发云模型相比,我们建议的技术将近33%降低了近33%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号