首页> 外文期刊>Microprocessors and microsystems >Delay-aware concurrent data management method for IoT collaborative mobile edge computing environment
【24h】

Delay-aware concurrent data management method for IoT collaborative mobile edge computing environment

机译:IOT协作移动边缘计算环境的延时感知并发数据管理方法

获取原文
获取原文并翻译 | 示例

摘要

Internet of Things (IoT) is an emergent communication technology connecting heterogeneous users, services and applications for granting seamless support for end-user demands. The heterogeneous nature of the devices and intelligent computing, storage, and processing paradigms are exploited for serving different application requests of the end-user devices. Edge computing inherits the functions of IoT platform to the brim of the user network to grant tardiness-free service/ communication support. This manuscript discusses a novel delay-aware concurrent data management (DCDM) method for IoT collaborative mobile edge computing (MEC) environment. This method categorizes request and response data independently in the edge layer through timeout and request density based optimization. A differential evolution (DE) based optimization is introduced for optimizing the constraints of the framework in favor of concurrent request processing and precise data allocation. This method is tested through appropriate experiments and the corresponding results are verified to prove the consistency of the method. The metrics such as serviced and processed request, response time, resource utilization, and communication span are validated using the experimental results. The performance of the proposed DCDM is compared with the existing methods. (C) 2020 Elsevier B.V. All rights reserved.
机译:事物互联网(IOT)是一个紧急的通信技术,连接异构用户,服务和应用程序,以便为最终用户需求授予无缝支持。利用设备和智能计算,存储和处理范例的异构性质,用于服务于最终用户设备的不同应用程序请求。 EDGE Computing继承IoT平台的功能到用户网络的边缘,以授予迟到的服务/通信支持。此稿件讨论了一种新颖的延迟感知并发数据管理(DCDM)方法,用于IOT协作移动边缘计算(MEC)环境。此方法通过超时和请求密度基于优化在边缘层中独立地分类请求和响应数据。引入了基于差分演进(DE)优化用于优化框架的约束,以支持并发请求处理和精确的数据分配。通过适当的实验测试该方法,并验证相应的结果以证明方法的一致性。使用实验结果验证诸如服务和处理的请求,响应时间,资源利用和通信范围之类的度量。将所提出的DCDM的性能与现有方法进行比较。 (c)2020 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号