首页> 外文期刊>Microprocessors and microsystems >A fully pipelined FPGA accelerator for scale invariant feature transform keypoint descriptor matching
【24h】

A fully pipelined FPGA accelerator for scale invariant feature transform keypoint descriptor matching

机译:用于尺度不变特征变换关键点描述符匹配的全流水线FPGA加速器

获取原文
获取原文并翻译 | 示例

摘要

The scale invariant feature transform (SIFT) algorithm is considered a classical feature extraction algorithm within the field of computer vision. SIFT keypoint descriptor matching is a computationally intensive process due to the amount of data consumed. In this work, we designed a novel fully pipelined hardware accelerator architecture for SIFT keypoint descriptor matching. The accelerator core was implemented and tested on a field programmable gate array (FPGA). The proposed hardware architecture is able to properly handle the memory bandwidth necessary for a fully-pipelined implementation and hits the roofline performance model, achieving the potential maximum throughput. The fully pipelined matching architecture was designed based on the consine angle distance method. Our architecture was optimized for 16-bit fixed-point operations and implemented on hardware using a Xilinx Zynq-based FPGA development board. Our proposed architecture shows a noticeable reduction of area resources compared with its counterparts in literature, while maintaining high throughput by alleviating memory bandwidth restrictions. The results show a reduction in consumed device resources of up to 91% in LUTs and 79% of BRAMs. Our hardware implementation is 15.7 x faster than the comparable software approach. (C) 2019 Elsevier B.V. All rights reserved.
机译:尺度不变特征变换(SIFT)算法被认为是计算机视觉领域的经典特征提取算法。由于消耗的数据量,SIFT关键点描述符匹配是一个计算密集型过程。在这项工作中,我们设计了一种新颖的全流水线硬件加速器体系结构,用于SIFT关键点描述符匹配。加速器核心是在现场可编程门阵列(FPGA)上实现和测试的。所提出的硬件体系结构能够正确处理完全流水线实施所需的内存带宽,并且达到了屋顶性能模型,从而实现了潜在的最大吞吐量。基于余弦角距离法设计了全流水线匹配架构。我们的架构针对16位定点操作进行了优化,并使用基于Xilinx Zynq的FPGA开发板在硬件上实现。与文献中的对应结构相比,我们提出的体系结构显示出区域资源显着减少,同时通过减轻内存带宽限制来保持高吞吐量。结果表明,LUT和BRAM的消耗设备资源减少了多达91%。我们的硬件实现比同类软件方法快15.7倍。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号