首页> 外文期刊>Microprocessors and microsystems >Adaptive genetic algorithm for energy-efficient task scheduling on asymmetric multiprocessor system-on-chip
【24h】

Adaptive genetic algorithm for energy-efficient task scheduling on asymmetric multiprocessor system-on-chip

机译:非对称多处理器片上系统的节能任务调度自适应遗传算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a genetic algorithm (GA) based energy-efficient design-time task scheduling algorithm, AGATS, for an asymmetric multiprocessor system-on-chip. Unlike existing GA-based task scheduling algorithms, AGATS adaptively applies different generation strategies to solution candidates based on their completion time and energy consumption. For solution candidates to evolve intelligently, instead of using conventional genetic operators, AGATS uses three generation strategies: elitism, mutation of elites (MOE), and adaptive generation (AG). The first copies a small portion of elite solution candidates into the next generation to guarantee that solution quality does not decrease from the current to the next generation. The second mutates randomly selected elite solution candidates to maintain both the diversity of candidates and solution quality. Finally, the third adaptively evolves solution candidates toward better candidates based on their completion time and energy consumption. In experiments, AGATS reduced energy consumption by up to 29.3% compared to existing methods and outperformed them in most cases. Furthermore, it identified feasible solutions effectively, which was not the case with the existing methods under tight timing constraints. (C) 2019 Elsevier B.V. All rights reserved.
机译:针对非对称多处理器片上系统,本文提出了一种基于遗传算法的高能效设计时任务调度算法AGATS。与现有的基于GA的任务调度算法不同,AGATS根据完成时间和能耗自适应地将不同的生成策略应用于候选解决方案。为了使候选解决方案能够智能地进化,而不是使用传统的遗传算子,AGATS使用了三种生成策略:精英,精英突变(MOE)和自适应生成(AG)。第一部分将一小部分优秀的候选解决方案复制到下一代产品中,以确保解决方案质量不会从当前水平下降到下一代。第二种方法对随机选择的精英解决方案候选者进行变异,以保持候选者的多样性和解决方案质量。最后,第三种方法会根据其完成时间和能耗,将解决方案候选项自适应地发展为更好的候选项。在实验中,与现有方法相比,AGATS降低了多达29.3%的能耗,并且在大多数情况下均表现出色。此外,它有效地确定了可行的解决方案,而在时间紧迫的情况下,现有方法则并非如此。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号