首页> 外文期刊>Microprocessors and microsystems >An FPGA implementation of a neural optimization of block truncation coding for image/video compression
【24h】

An FPGA implementation of a neural optimization of block truncation coding for image/video compression

机译:用于图像/视频压缩的块截断编码神经优化的FPGA实现

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a Field Programmable Gate Array (FPGA) implementation for image/video compression using an improved block truncation coding (BTC) image compression technique. The improvement is achieved by employing a Hopfield neural network (HNN) to calculate a cost function upon which a block is classified as either a high- or a low-detail block. Accordingly, different blocks are coded with different bit rates and thus resulting in better compression ratios. The paper formulates the utilization of HNN within the BTC algorithm in such a way that a viable FPGA implementation is produced. The implementation exploits the inherent parallelism of the BTC/HNN algorithm to provide efficient algorithm-to-architecture mapping. The Xilinx VirtexE BTC implementation has shown to provide a processing speed of about 1.113 × 10~6 of pixels per second with a compression ratio which varies between 1.25 and 2 bits/pixel, according to the image nature.
机译:本文提出了一种使用改进的块截断编码(BTC)图像压缩技术的图像/视频压缩现场可编程门阵列(FPGA)实现。通过使用Hopfield神经网络(HNN)计算成本函数,将一个块分类为高细节块或低细节块,从而实现了改进。因此,以不同的比特率对不同的块进行编码,从而导致更好的压缩率。本文提出了在BTC算法中使用HNN的方式,从而产生了可行的FPGA实现。该实现利用BTC / HNN算法的固有并行性来提供有效的算法到体系结构的映射。 Xilinx VirtexE BTC实现方案显示,根据图像的性质,其处理速度约为每秒1.113×10〜6像素,压缩比在1.25和2位/像素之间变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号