首页> 外文期刊>Microprocessors and microsystems >A scalable pipelined architecture for real-time computation of MLP-BP neural networks
【24h】

A scalable pipelined architecture for real-time computation of MLP-BP neural networks

机译:用于实时计算MLP-BP神经网络的可扩展流水线架构

获取原文
获取原文并翻译 | 示例

摘要

In this paper a novel architecture for implementing multi-layer perceptron (MLP) neural networks on field programmable gate arrays (FPGA) is presented. The architecture presents a new scalable design that allows variable degrees of parallelism in order to achieve the best balance between performance and FPGA resources usage. Performance is enhanced using a highly efficient pipelined design. Extensive analysis and simulations have been conducted on four standard benchmark problems. Results show that a minimum performance boost of three orders of magnitude (O~3) over software implementation is regularly achieved. We report performance of 2-67 GCUPS for these simple problems, and performance reaching over 1 TCUPS for larger networks and different single FPGA chips. To our knowledge, this is the highest speed reported to date for any MLP network implementation on FPGAs.
机译:本文提出了一种在现场可编程门阵列(FPGA)上实现多层感知器(MLP)神经网络的新颖架构。该架构提出了一种新的可扩展设计,该设计允许可变程度的并行度,以便在性能和FPGA资源使用之间达到最佳平衡。使用高效的流水线设计可提高性能。已经对四个标准基准问题进行了广泛的分析和模拟。结果表明,与软件实现相比,可以实现至少三个数量级(O〜3)的最小性能提升。对于这些简单的问题,我们报告的性能为2-67 GCUPS,对于较大的网络和不同的单个FPGA芯片,性能达到1 TCUPS以上。据我们所知,这是迄今为止在FPGA上任何MLP网络实现中报告的最高速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号