首页> 外文期刊>Microprocessors and microsystems >Customizing VLIW processors from dynamically profiled execution traces
【24h】

Customizing VLIW processors from dynamically profiled execution traces

机译:通过动态分析的执行跟踪来自定义VLIW处理器

获取原文
获取原文并翻译 | 示例

摘要

The design philosophy of VLIW processors is to maximize instruction level parallelism (ILP) starting from compiler and machine code level to all the way down to memory and computational blocks. For this purpose, VLIW tailoring has been an important research area, because non-tailored VLIWs cannot fully utilize the available VLIW hardware resources. This paper introduces a method which achieves VLIW customization by processing execution traces obtained by dynamic profiling. Our method differentiates memory and non-memory instructions while processing execution traces. Customizing VLIW multi-port memory from memory operations provides better memory utilization and higher performance. Moreover, exploration of the multi-port memory configuration is coupled with data path exploration, namely the number and the composition of execution units for efficient extraction of ILP. We have designed a genetic algorithm for the exploration of the large design space formed by the execution traces. Our experiments show that our method has improved and found more compact memory topologies than state-of-the-art VLIW customization algorithms. In addition, we compare the execution performance, power consumption, average parallelism and area-delay product results of our VLIW model with a RISC processor model on evaluated benchmarks using our simulator framework. (C) 2015 Elsevier B.V. All rights reserved.
机译:VLIW处理器的设计理念是最大化指令级并行性(ILP),从编译器和机器代码级一直到内存和计算块。为此,VLIW裁剪一直是重要的研究领域,因为非定制的VLIW无法充分利用可用的VLIW硬件资源。本文介绍了一种通过处理通过动态概要分析获得的执行轨迹来实现VLIW定制的方法。我们的方法在处理执行跟踪时区分内存指令和非内存指令。通过内存操作自定义VLIW多端口内存可提供更好的内存利用率和更高的性能。此外,多端口存储器配置的探索与数据路径探索相结合,即有效提取ILP的执行单元的数量和组成。我们设计了一种遗传算法来探索由执行迹线形成的大型设计空间。我们的实验表明,与最新的VLIW定制算法相比,我们的方法已经改进并发现了更紧凑的内存拓扑。此外,我们使用模拟器框架将VLIW模型的执行性能,功耗,平均并行度和面积延迟乘积结果与RISC处理器模型进行了比较,并以评估基准进行了比较。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号