首页> 外文期刊>Microprocessors and microsystems >ASHA: An adaptive shared-memory sharing architecture for multi-programmed GPUs
【24h】

ASHA: An adaptive shared-memory sharing architecture for multi-programmed GPUs

机译:ASHA:适用于多程序GPU的自适应共享内存共享架构

获取原文
获取原文并翻译 | 示例

摘要

Spatial multi-programming is one of the most efficient multi-programming methods on Graphics Processing Units (GPUs). This multi-programming scheme generates variety in resource requirements of stream multiprocessors (SMs) and creates opportunities for sharing unused portions of each SM resource with other SMs. Although this approach drastically improves GPU performance, in some cases it leads to performance degradation due to the shortage of allocated resource to each program. Considering shared memory as one of the main bottlenecks of thread-level parallelism (TLP), in this paper, we propose an adaptive shared-memory sharing architecture, called ASHA. ASHA enhances spatial multi-programming performance and increases utilization of GPU resources. Experimental results demonstrate that ASHA improves speedup of a multi-programmed GPU by 17%-21%, on average, for 2- to 8-program execution scenarios, respectively. (C) 2016 Published by Elsevier B.V.
机译:空间多重编程是图形处理单元(GPU)上最有效的多重编程方法之一。这种多编程方案产生了流多处理器(SM)的各种资源需求,并为与其他SM共享每个SM资源的未使用部分创造了机会。尽管此方法可以极大地提高GPU性能,但在某些情况下,由于缺少分配给每个程序的资源,导致性能下降。考虑到共享内存是线程级并行性(TLP)的主要瓶颈之一,在本文中,我们提出了一种自适应共享内存共享体系结构,称为ASHA。 ASHA增强了空间多重编程性能,并提高了GPU资源的利用率。实验结果表明,对于2到8程序执行方案,ASHA可使多程序GPU的平均速度分别提高17%-21%。 (C)2016由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号