首页> 外文期刊>Microprocessors and microsystems >An approach for analyzing auto-vectorization potential of emerging workloads
【24h】

An approach for analyzing auto-vectorization potential of emerging workloads

机译:分析新兴工作负载的自动矢量化潜力的方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an analytical study on PARSEC benchmark suite in order to examine the auto-vectorization potential of emerging workloads by ICC and GCC compilers. For investigating auto-vectorization potential, we have analyzed the amount of vectorized and non-vectorized loops and the number of vector instructions of application. We have found most of the time-consuming loops of the applications have not been vectorized. Then, we have modified the applications and profiled them again. We have shown applying the modifications have a considerable effect on the amount of vectorized loops but the number of instructions has not reduced to what we expect because of the limited size of SIMD-width of current processors. As a result, in addition to applying some algorithmic methods such as loop unrolling, splitting large loops, definition of data structures, replacing function calls in loops with function bodies removing control flows from the loops in possible cases and so on to help the compilers for auto-vectorization, increasing the SIMD-width of the vector extension of CPUs is an important issue in order to improve the speed and performance. (C) 2016 Elsevier B.V. All rights reserved.
机译:本文对PARSEC基准套件进行了分析研究,以检查ICC和GCC编译器对新兴工作负载的自动矢量化潜力。为了研究自动矢量化的潜力,我们分析了矢量化和非矢量化循环的数量以及矢量化应用指令的数量。我们发现大多数应用程序的耗时循环尚未向量化。然后,我们修改了应用程序并再次对其进行了概要分析。我们已经显示出应用这些修改对矢量化循环的数量有很大影响,但是由于当前处理器SIMD宽度的大小有限,指令的数量并没有减少到我们期望的数量。结果,除了应用一些算法方法(例如循环展开,拆分大循环,定义数据结构,用函数体替换循环中的函数调用,在可能的情况下从循环中删除控制流等)以帮助编译器自动矢量化,增加CPU的矢量扩展的SIMD宽度是提高速度和性能的重要问题。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号