首页> 外文期刊>Microprocessors and microsystems >Zeroing for HW-efficient compressed sensing architectures targeting data compression in wireless sensor networks
【24h】

Zeroing for HW-efficient compressed sensing architectures targeting data compression in wireless sensor networks

机译:针对无线传感器网络中数据压缩的硬件高效压缩传感架构进行调零

获取原文
获取原文并翻译 | 示例

摘要

The design of ultra-low cost wireless body sensor networks for wearable biomedical monitors has been made possible by today technology scaling. In these systems, a typically multi-channel biosignal sensor takes care of the operations of acquisition, data compression and final output transmission or storage. Furthermore, since these sensors are usually battery powered, the achievement of minimal energy operation is a fundamental issue. To this aim, several aspects must be considered, ranging from signal processing to architectural optimization. In this paper we consider the recently proposed rakeness-based compressed sensing (CS) paradigm along with its zeroing companion. With respect to a standard CS base sensor, the first approach allows us to further increase compression rate without sensible signal quality degradation by exploiting localization of input signal energy. The latter paradigm is here formalized and applied to further reduce the energy consumption of the sensing node. The application of both rakeness and zeroing allows for trading off energy from the compression stage to the trahsmission or storage one. Different cases are taken into account, by considering a realistic model of an ultra-low-power multicore DSP system. (C) 2016 Elsevier B.V. All rights reserved.
机译:如今,随着技术的发展,可穿戴生物医学监护仪的超低成本无线人体传感器网络的设计成为可能。在这些系统中,典型的多通道生物信号传感器负责采集,数据压缩以及最终输出传输或存储的操作。此外,由于这些传感器通常由电池供电,因此实现最低限度的能量运行是一个基本问题。为此,必须考虑几个方面,从信号处理到架构优化。在本文中,我们考虑了最近提出的基于耙度的压缩感知(CS)范式及其归零伴侣。对于标准CS基础传感器,第一种方法允许我们通过利用输入信号能量的定位来进一步提高压缩率,而不会导致明显的信号质量下降。后者的范式在这里正式化并应用于进一步减少感测节点的能耗。倾斜度和归零的应用允许权衡从压缩阶段到传输或存储阶段的能量。通过考虑超低功耗多核DSP系统的实际模型,考虑了不同的情况。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号