首页> 外文期刊>Microfluidics and nanofluidics >A hybrid molecular-continuum simulation method for incompressible flows in microanofluidic networks
【24h】

A hybrid molecular-continuum simulation method for incompressible flows in microanofluidic networks

机译:微/纳流网络中不可压缩流的混合分子连续谱模拟方法

获取原文
获取原文并翻译 | 示例

摘要

We present a hybrid molecular-continuum simulation method for modelling nano- and micro-flows in network-type systems. In these types of problem, a full molecular dynamics (MD) description of the macroscopic flow behaviour would be computationally intractable, or at least too expensive to be practical for engineering design purposes. Systems that exhibit multiscale traits, such as this, can instead be solved using a hybrid approach that distinguishes the problem into macroscopic and microscopic dynamics, modelled by their respective solvers. The technique presented in this study is an extension and addition to a hybrid method developed by Borg et al. (J Comput Phys 233:400-413, 2013) for high-aspect-ratio channel geometries, known as the internal-flow multiscale method (IMM). Computational savings are obtained by replacing long channels in the network, which are highly scale-separated, by much smaller, but representative, MD simulations, without a substantial loss of accuracy. On the other hand, junction components do not exhibit this length-scale separation, and so must be simulated in their entirety using MD. The current technique combines all network elements (junctions and channels) together in a coupled simulation using continuum conservation laws. For the case of steady, isothermal, incompressible, low-speed flows, we use the conservation of mass and momentum flux equations to derive a set of molecular-continuum constraints. An algorithm is presented here that computes at each iteration the new constraints on the pressure differences to be applied over individual MD micro-elements (channels and junctions), successively moving closer to macroscopic mass and momentum conservation. We show that hybrid simulations of some example network cases converge quickly, in only a few iterations, and compare very well to the corresponding full MD results, which are taken as the most accurate solutions. Major computational savings can be afforded by the IMM-type approximation in the channel components, but for steady-state solutions, even greater savings are possible. This is because the micro-elements are coupled to a steady-state continuum conservation expression, which greatly speeds up the relaxation of individual micro-components to steady conditions as compared to that of a full MD simulation. Unsteady problems with high temporal scale separation can also be simulated, but general transient problems are beyond the capabilities of the current technique.
机译:我们提出了一种用于在网络类型的系统中建模纳米流和微流的混合分子连续体仿真方法。在这些类型的问题中,宏观流动行为的完整分子动力学(MD)描述在计算上是棘手的,或者至少太昂贵而无法用于工程设计目的。表现出这种多尺度特征的系统,可以使用一种混合方法来解决,该方法将问题分为宏观和微观动力学,并由各自的求解器进行建模。本研究中介绍的技术是对Borg等人开发的混合方法的扩展和补充。 (J Comput Phys 233:400-413,2013),用于高纵横比的通道几何结构,称为内部流多尺度方法(IMM)。通过将网络中较长的通道替换为规模较小的长得多的但具有代表性的MD模拟,可以节省计算成本,而不会显着降低精度。另一方面,结组件没有这种长度尺度的分隔,因此必须使用MD对其进行整体模拟。当前的技术使用连续性守恒定律在耦合模拟中将所有网络元素(结点和通道)组合在一起。对于稳定,等温,不可压缩的低速流,我们使用质量和动量通量方程的守恒来导出一组分子连续约束。此处提出一种算法,该算法在每次迭代时计算要应用于单个MD微型元素(通道和连接点)的压力差的新约束,从而逐渐接近宏观质量和动量守恒。我们表明,某些示例网络案例的混合仿真仅需几次迭代即可快速收敛,并且与相应的完整MD结果进行了很好的比较,这些结果被认为是最准确的解决方案。通道组件中的IMM类型逼近可以节省大量计算量,但是对于稳态解决方案,甚至可以实现更大的节省量。这是因为微元素与稳态连续谱守恒表达耦合,与完整的MD模拟相比,这极大​​地加快了将单个微组件松弛到稳态的速度。也可以模拟具有高时间尺度分离的非稳态问题,但是一般的瞬态问题超出了当前技术的能力范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号