...
首页> 外文期刊>Microelectronics & Reliability >Design and simulation of MOSCNT with band engineered source and drain regions
【24h】

Design and simulation of MOSCNT with band engineered source and drain regions

机译:带设计源极和漏极区的MOSCNT的设计与仿真

获取原文
获取原文并翻译 | 示例

摘要

We propose a new Metal-oxide-semiconductor carbon-nanotube transistor (MOSCNT) in which source (S) and drain (D) regions are formed by band engineered multi-wall carbon nanotubes (BE-MWCNTs). The gradual potential profiles of these band-engineered S/D regions weakening the longitudinal confinements in the channel reduce the band-to-band tunneling significantly and hence eliminating the ambi-polar behavior observed in other types of MOSCNTs. Such an excellent performance makes the proposed band engineered MWCNT a potential alternative to the chemically/electrostatically doped CNTs that are usually used as S/D regions in MOSCNTs. Simulations show that the proposed band engineered MOSCNT (BE-MOSCNT) outperforms the lightly-doped drain and source (LDDS) MOSCNT, in both ON and OFF regimes. The LDDS-MOSCNT has already proven to outperform the conventional MOSCNTs. The proposed BE-MOSCNT, in comparison with its earlier rivals, exhibits smaller subthreshold swing, smaller drain-induced barrier lowering, and lower OFF currents. Thus, in this respect, it could be more attractive to circuit designers. To simulate the device band structure and I-V characteristics, we have employed the non-equilibrium Green function (NEGF) formalism using the modified Hamiltonian and tight-binding approximation with only pz-orbitals.
机译:我们提出了一种新的金属氧化物半导体碳纳米管晶体管(MOSCNT),其中的源极(S)和漏极(D)区域由能带工程多壁碳纳米管(BE-MWCNTs)形成。这些频带工程化的S / D区域的逐渐电位分布减弱了沟道中的纵向限制,从而显着降低了频带间隧穿,从而消除了其他类型MOSCNT中观察到的双极性行为。如此出色的性能使所提出的能带工程的MWCNT成为通常用作MOSCNT中S / D区的化学/静电掺杂CNT的潜在替代品。仿真表明,在开通和关断两种情况下,拟议的频带设计MOSCNT(BE-MOSCNT)均优于轻掺杂的漏极和源极(LDDS)MOSCNT。 LDDS-MOSCNT已被证明优于传统的MOSCNT。与早期的竞争对手相比,拟议的BE-MOSCNT具有较小的亚阈值摆幅,较小的漏极感应势垒降低和较低的关断电流。因此,在这方面,它对电路设计者可能更具吸引力。为了模拟器件的能带结构和I-V特性,我们采用了非平衡格林函数(NEGF)形式,使用修正的哈密顿量和仅具有pz轨道的紧密结合近似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号