...
首页> 外文期刊>Microelectromechanical Systems, Journal of >Electrothermal Microactuators With Peg Drive Improve Performance for Brain Implant Applications
【24h】

Electrothermal Microactuators With Peg Drive Improve Performance for Brain Implant Applications

机译:带钉驱动的电热微执行器提高了脑植入应用的性能

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a new actuation scheme for in-plane bidirectional translation of polysilicon microelectrodes. The new Chevron-peg actuation scheme uses micro-electromechanical systems (MEMS) based electrothermal microactuators to move microelectrodes for brain implant applications. The design changes were motivated by specific needs identified by the in vivo testing of an earlier generation of MEMS microelectrodes that were actuated by the Chevron-latch type of mechanism. The microelectrodes actuated by the Chevron-peg mechanism discussed here show improved performance in the following key areas: higher force generation capability (111 $mu hbox{N}$ per heat strip compared to 50 $mu hbox{N}$), reduced power consumption (91 mW compared to 360 mW), and reliable performance with consistent forward and backward movements of microelectrodes. Failure analysis of the Chevron-latch and the Chevron-peg type of actuation schemes showed that the latter is more robust to wear over four million cycles of operation. The parameters for the activation waveforms for Chevron-peg actuators were optimized using statistical analysis. Waveforms with a 1-ms time period and a 1-Hz frequency of operation showed minimal error between the expected and the actual movement of the microelectrodes. The new generation of Chevron-peg actuators and microelectrodes are therefore expected to enhance the longevity and performance of implanted microelectrodes in the brain.$hfill$ [2011-0341]
机译:本文提出了一种多晶硅微电极面内双向平移的新驱动方案。新的Chevron-peg致动方案使用基于微机电系统(MEMS)的电热微致动器来移动微电极,以进行脑植入应用。设计更改的动机是通过对由Chevron-latch型机构驱动的较早一代MEMS微电极进行的体内测试,确定了特定的需求。此处讨论的Chevron-peg机构致动的微电极在以下关键领域显示出改进的性能:更高的力产生能力(每个加热条的发电量为111μmuhbox {N} $,而50μmuhbox {N} $),降低的功率功耗(与360毫瓦相比为91毫瓦),可靠的性能以及微电极前后一致的运动。对Chevron-latch和Chevron-peg类型的致动方案进行的故障分析表明,后者在经过400万次操作循环后更加坚固。 Chevron-peg执行器的激活波形参数已使用统计分析进行了优化。 1 ms的时间周期和1 Hz的操作频率的波形显示微电极的预期运动与实际运动之间的误差最小。因此,新一代的Chevron-peg致动器和微电极有望增强大脑中植入的微电极的寿命和性能。$ hfill $ [2011-0341]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号