首页> 外文期刊>Memetic Computing >Information sharing impact of stochastic diffusion search on differential evolution algorithm
【24h】

Information sharing impact of stochastic diffusion search on differential evolution algorithm

机译:随机扩散搜索的信息共享对差分进化算法的影响

获取原文
获取原文并翻译 | 示例

摘要

This work details the research aimed at applying the powerful resource allocation mechanism deployed in stochastic diffusion search (SDS) to the differential evolution (DE), effectively merging a nature inspired swarm intelligence algorithm with a biologically inspired evolutionary algorithm. The results reported herein suggest that the hybrid algorithm, exploiting information sharing between the population elements, has the potential to improve the optimisation capability of classical DE algorithms. This claim is verified by running several experiments using state-of-the-art benchmarks. Additionally, the significance of the frequency within which SDS introduces communication and information exchange is also investigated.
机译:这项工作详细研究了旨在将部署在随机扩散搜索(SDS)中的强大资源分配机制应用于微分进化(DE)的研究,从而有效地将自然启发性群体智能算法与生物启发性进化算法相结合。本文报道的结果表明,利用种群元素之间的信息共享的混合算法具有改善经典DE算法优化能力的潜力。通过使用最新基准进行多次实验,验证了这一主张。此外,还研究了SDS引入通信和信息交换的频率的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号