首页> 外文期刊>Memetic Computing >Memetic algorithms, domain knowledge, and financial investing
【24h】

Memetic algorithms, domain knowledge, and financial investing

机译:模因算法,领域知识和金融投资

获取原文
获取原文并翻译 | 示例

摘要

How might domain knowledge constrain a genetic algorithm and systematically impact the algorithm’s traversal of the search space? In particular, in this paper the hypothesis is advanced that a semantic tree of financial knowledge can be used to influence the results of a genetic algorithm for financial investing problems. An algorithm is described, called the “Memetic Algorithm for Domain Knowledge”, and is instantiated in a software system. In mutation experiments, this system chooses financial ratios to use as inputs to a neural logic network which classifies stocks as likely to increase or decrease in value. The mutation is guided by a semantic tree of financial ratios. In crossover experiments, this system solves a portfolio optimization problem in which components of an individual represent weights on stocks; knowledge in the form of a semantic tree of industries determines the order in which components are sorted in individuals. Both synthetic data and real-world data are used. The experimental results show that knowledge can be used to reach higher fitness individuals more quickly. More interestingly, the results show how conceptual distance in the human knowledge can correspond to distance between evolutionary individuals and their fitness. In other words, knowledge might be dynamically used to at times increase the step size in a search algorithm or at times to decrease the step size. These results shed light on the role of knowledge in evolutionary computation and are part of the larger body of work to delineate how domain knowledge might usefully constrain the genetic algorithm.
机译:领域知识如何约束遗传算法,并系统地影响算法在搜索空间中的遍历?特别是,本文提出了一种假设,即可以使用金融知识的语义树来影响用于金融投资问题的遗传算法的结果。描述了一种算法,称为“领域知识的Memetic算法”,并在软件系统中实例化。在变异实验中,该系统选择财务比率作为神经逻辑网络的输入,该逻辑网络将股票分类为价值可能增加或减少的股票。变异以财务比率的语义树为指导。在交叉实验中,该系统解决了投资组合优化问题,其中个人组成部分代表股票的权重。行业语义树形式的知识决定了个人对组件进行排序的顺序。合成数据和实际数据都被使用。实验结果表明,知识可用于更快地达到较高健身水平的人。更有趣的是,结果表明人类知识中的概念距离如何与进化个体及其适应度之间的距离相对应。换句话说,知识可能会动态地用于有时增加搜索算法中的步长,或有时减小步长。这些结果揭示了知识在进化计算中的作用,并且是描述领域知识如何有效约束遗传算法的较大工作的一部分。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号