首页> 外文期刊>Mechatronics, IEEE/ASME Transactions on >Vibrational Triboelectric Nanogenerator-Based Multinode Self-Powered Sensor Network for Machine Fault Detection
【24h】

Vibrational Triboelectric Nanogenerator-Based Multinode Self-Powered Sensor Network for Machine Fault Detection

机译:基于振动的摩擦电纳米电机的多光电自动传感器网络,用于机器故障检测

获取原文
获取原文并翻译 | 示例

摘要

Physical parameter sensing largely benefits the lifetime and operational costs of machines and has been widely used for machine fault detection. Herein, in this article, we developed a multinode sensor network, which is fully self-powered by harvesting mechanical vibration energy, to establish a machine fault detection system. A multilayered vibrational triboelectric nanogenerator (V-TENG) was designed to scavenge energy from working machines. Triggered by a vibration motion with the frequency of 8 Hz, the V-TENG can generate an output with power density of 3.33 mW/m(3). With a power management module, the microcontrol unit integrated with sensors and a wireless transmitter can be continuously powered by the V-TENG to construct a self-powered vibration sensor node (SVSN). A supporting vector machine algorithm-based machine fault detection system was then established through a three-SVSN network by acquiring acceleration and temperature data from the working machine. Based on the system, different working conditions of the machine were recognized with an accuracy of 83.6%. The TENG-based SVSN for machine fault detection has demonstrated wide prospects in production monitoring, intelligent manufacturing, and smart factory. Moreover, the proposed self-powered sensor network has great potential and wide application in the era of distributed Internet of Things, artificial intelligence, and big data.
机译:物理参数感应主要有利于机器的寿命和运营成本,并已广泛用于机器故障检测。这里,在本文中,我们开发了一种多光音传感器网络,该网络完全通过收获机械振动能量来建立机器故障检测系统。多层振动摩擦纳米料(V-Teng)设计用于从工作机器中清除能量。通过频率为8Hz的振动运动触发,V-Teng可以产生功率密度为3.33mW / m(3)的输出。利用电源管理模块,与传感器集成的微控制器和无线发射器可以由V-Teng连续供电,以构建自动振动传感器节点(SVSN)。然后通过从工作机器获取加速度和温度数据,通过三个SVSN网络建立支持的向量机算法的机器故障检测系统。基于该系统,识别机器的不同工作条件,精度为83.6%。机器故障检测的基于Teng的SVSN在生产监控,智能制造和智能工厂的广阔前景中表现出广阔的前景。此外,所提出的自动传感器网络在分布式互联网的时代,人工智能和大数据的时代具有很大的潜力和广泛应用。

著录项

  • 来源
    《Mechatronics, IEEE/ASME Transactions on》 |2020年第5期|2188-2196|共9页
  • 作者单位

    Chinese Acad Sci CAS Ctr Excellence Nanosci Beijing Key Lab Micronano Energy & Sensor Beijing Inst Nanoenergy & Nanosyst Beijing 100083 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Nanosci Beijing Key Lab Micronano Energy & Sensor Beijing Inst Nanoenergy & Nanosyst Beijing 100083 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Nanosci Beijing Key Lab Micronano Energy & Sensor Beijing Inst Nanoenergy & Nanosyst Beijing 100083 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Nanosci Beijing Key Lab Micronano Energy & Sensor Beijing Inst Nanoenergy & Nanosyst Beijing 100083 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Nanosci Beijing Key Lab Micronano Energy & Sensor Beijing Inst Nanoenergy & Nanosyst Beijing 100083 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Nanosci Beijing Key Lab Micronano Energy & Sensor Beijing Inst Nanoenergy & Nanosyst Beijing 100083 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Nanosci Beijing Key Lab Micronano Energy & Sensor Beijing Inst Nanoenergy & Nanosyst Beijing 100083 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

    Chinese Acad Sci CAS Ctr Excellence Nanosci Beijing Key Lab Micronano Energy & Sensor Beijing Inst Nanoenergy & Nanosyst Beijing 100083 Peoples R China|Univ Chinese Acad Sci Beijing 100049 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Vibrations; Fault detection; Resonant frequency; Copper; Electrodes; Sensors; Power system management; Internet of Things; machine fault detection; self-powered system; triboelectric nanogenerator (TENG); vibration energy harvesting;

    机译:振动;故障检测;谐振频率;铜;电极;传感器;电力系统管理;事物互联网;机器故障检测;自动系统;摩擦纳米料(腾);摩擦能量收获;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号