首页> 外文期刊>Mechanics of Advanced Materials and Structures >Development of Mathematical Models and Computational Framework for Multi-physics Interaction Processes
【24h】

Development of Mathematical Models and Computational Framework for Multi-physics Interaction Processes

机译:多物理场相互作用过程的数学模型和计算框架的开发

获取原文
获取原文并翻译 | 示例

摘要

This paper presents development of mathematical models for multi-physics interaction processes in which the physics of solids, liquids and gases are described using conservation laws, appropriate constitutive equations and equations of state in Eulerian description. The use of conservation laws in Eulerian description for all media of an interaction process and the choice of the same dependent variables in the resulting governing differential equations (GDEs) for solids, liquids and gases ensure that their interactions are intrinsic in the mathematic model. In the development of the constitutive equations and the equations of state, the same dependent variables are also utilized as those in the conservation laws. The dependent variables of choice due to the Eulerian description (which is necessary for liquids and gases) are density, pressure, velocities, temperature, heat fluxes and stress deviations. For solid, liquids and gases the development of constitutive equations is based on rate constitutive equations utilizing convected time derivatives of the chosen stress and strain measures. The resulting GDEs from these mathematical models are a system of non-linear partial differential equations in space coordinates and time. The hpk mathematical and computational finite element framework with space-time variationally consistent (STVC) integral forms is utilized to obtain the numerical solutions of the associated initial value problems. The proposed computational methodology permits higher order global differentiability approximations, and ensures time accuracy of evolutions as well as unconditional stability of computations during the entire evolution. The methodology presented here for multi-media interaction processes is rather natural and lends itself naturally to accurate finite element computations in hpk framework when the integral forms are STVC. In most of the currently used methodologies, the interaction between the different media is established using constraint equations at the interfaces between the media. Thus these approaches are error prone and the validity and accuracy of the computed solution is highly dependent on the physics described by the constraint equations. In the proposed methodology, the constraint equations are completely eliminated.
机译:本文介绍了用于多物理场相互作用过程的数学模型的开发,其中使用守恒定律,适当的本构方程和欧拉描述中的状态方程来描述固体,液体和气体的物理场。在欧拉描述中对相互作用过程的所有介质使用守恒定律,并在所得的固体,液体和气体控制微分方程(GDE)中选择相同的因变量,以确保它们的相互作用在数学模型中是固有的。在本构方程和状态方程的发展中,同样的因变量也被利用为守恒律中的变量。由于欧拉描述(对于液体和气体而言是必需的),选择的因变量是密度,压力,速度,温度,热通量和应力偏差。对于固体,液体和气体,本构方程的开发基于速率本构方程,该方程利用所选应力和应变度量的对流时间导数。这些数学模型产生的GDE是一个在空间坐标和时间上非线性的偏微分方程组。具有时空变化一致(STVC)积分形式的hpk数学和计算有限元框架用于获得相关初始值问题的数值解。所提出的计算方法允许更高阶的全局微分逼近,并确保演化的时间准确性以及整个演化过程中计算的无条件稳定性。此处介绍的用于多媒体交互过程的方法很自然,并且当积分形式为STVC时,自然可以在hpk框架中进行精确的有限元计算。在大多数当前使用的方法中,使用媒体之间的界面处的约束方程式来建立不同媒体之间的交互。因此,这些方法容易出错,并且所计算解决方案的有效性和准确性高度依赖于约束方程式描述的物理学。在提出的方法中,完全消除了约束方程。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号