首页> 外文期刊>Mechanics of Advanced Materials and Structures >An Unconstrained Third-Order Plate Theory Applied to Functionally Graded Plates Using a Meshless Method
【24h】

An Unconstrained Third-Order Plate Theory Applied to Functionally Graded Plates Using a Meshless Method

机译:无约束三阶板理论应用无网格方法应用于功能梯度板

获取原文
获取原文并翻译 | 示例

摘要

An interpolator meshless method is used in the numerical implementation of an Unconstrained Third-Order Plate Theory applied to functionally graded plates. The meshless method enforces the nodal connectivity using the Natural Neighbor concept and uses the Radial Point Interpolators in order to construct the interpolation functions, which possess the delta Kronecker property. The meshless method uses the weak-form of Galerkin, which is integrated with a background integration mesh completely node dependent. Several static and dynamic functionally graded plate and sandwich plate examples are solved in order to prove the high accuracy and convergence rate of the proposed method.
机译:插值法无网格方法用于无功能三阶板理论的数值实现,该理论应用于功能梯度板。无网格方法使用自然邻域概念来增强节点连接性,并使用径向点插值器来构造具有delta Kronecker属性的插值函数。无网格方法使用Galerkin的弱形式,该形式与完全依赖于节点的背景集成网格集成在一起。解决了几个静态和动态功能梯度板和夹心板示例,以证明该方法的高精度和收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号