首页> 外文期刊>Mechanical systems and signal processing >Artificial neural networks and genetic algorithms for gear fault detection
【24h】

Artificial neural networks and genetic algorithms for gear fault detection

机译:人工神经网络和遗传算法进行齿轮故障检测

获取原文
获取原文并翻译 | 示例

摘要

Condition monitoring is gaining importance in industry because of the need to increase machine availability. The use of vibration and acoustic emission (AE) signals is quite common in the field of condition monitoring of rotating machinery with potential applications of artificial neural networks (ANNs) in automated detection and diagnosis. Multi-layer perceptrons (MLPs) and radial basis functions (RBFs) are most commonly used ANNs, though interest on probabilistic neural networks (PNNs) is increasing in general and in the area of machine condition monitoring. Genetic algorithms (GAs) have been used to make the classification process faster and accurate using minimum number of features which primarily characterise the system conditions with optimised structure or parameters of ANNs. In a recent work, results of MLPs with GAs were presented for fault detection of gears using only time-domain features of vibration signals. In this approach, the features were extracted from finite segments of two signals: one with normal condition and the other with defective gears. In the present work, comparisons are made between the performance of three different types of ANNs, both without and with automatic selection of features and classifier parameters for the dataset of . The roles of different vibration signals, obtained under both normal and light loads and at low and high sampling rates, are investigated. The results show the effectiveness of the extracted features from the acquired and preprocessed signals in diagnosis of the machine condition. The procedure is illustrated using the vibration data of an experimental setup with normal and defective gears.
机译:由于需要提高机器可用性,因此状态监视在工业中变得越来越重要。振动和声发射(AE)信号的使用在旋转机械状态监测领域中非常普遍,在自动化检测和诊断中可能会应用人工神经网络(ANN)。多层感知器(MLP)和径向基函数(RBF)是最常用的ANN,尽管对概率神经网络(PNN)的兴趣在总体上以及在机器状态监视领域中正在增长。遗传算法(GA)已被用于使用最少数量的特征来使分类过程更快,更准确,这些特征主要是利用ANN的优化结构或参数来表征系统条件。在最近的工作中,仅使用振动信号的时域特征,提出了带有GA的MLP的结果,用于齿轮的故障检测。在这种方法中,特征是从两个信号的有限段中提取的:一个处于正常状态,另一个处于齿轮故障。在目前的工作中,对三种不同类型的人工神经网络的性能进行了比较,这两种神经网络都没有和具有自动选择特征和分类器参数的能力。研究了在正常和轻载以及低采样率和高采样率下获得的不同振动信号的作用。结果表明,从采集的信号和预处理的信号中提取的特征在诊断机器状态方面是有效的。使用带有正常齿轮和故障齿轮的实验装置的振动数据说明了该过程。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2004年第5期|p.1273-1282|共10页
  • 作者

    B. Samanta;

  • 作者单位

    Department of Mechanical and Industrial Engineering College of Engineering, Sultan Qaboos University P. O. Box 33, PC 123, Muscat, Sultanate of Oman;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械制造工艺;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号