首页> 外文期刊>Mechanical systems and signal processing >Novel cyclostationarity-based blind source separation algorithm using second order statistical properties: Theory and application to the bearing defect diagnosis
【24h】

Novel cyclostationarity-based blind source separation algorithm using second order statistical properties: Theory and application to the bearing defect diagnosis

机译:基于二阶统计特性的基于循环平稳性的盲源分离算法:理论与在轴承缺陷诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Among signal processing techniques, blind source separation (BSS) and the underlying mathematical tool of independent component analysis (ICA) are of continuously growing interest in the scientific community of various research domains. Vibration analysis is a potential application field of this quite recent technique. Actually, BSS methods aim to retrieve unknown source signals from a set of their observations coming to a matrix of sensors, without necessarily having any prior knowledge about the sources. In monitoring and diagnosis purposes, bearing defects constitute a problem for manufacturers who aim at predicting those faults as well as potential engines breakdowns. These defects may be the unknown sources one wants to estimate from a set of recorded signals by a matrix of accelerometers placed close to the rotating machine. It has been shown that these vibration signals are wide-sense cyclostationary [[11] R.B.Randall, J. Antoni, S. Chobsaard, The relationship between spectral correlation and envelope analysis in the diagnostics of bearing faults and other cyclostationary machine signals, Mechanical Systems and Signal Processing 15 (5) (2001) 945-962]. The new algorithm of BSS proposed in this work is based, precisely, on that property. Second-order statistics of such processes led us to a new separation criterion for blind source separation. The theoretical results of this study, simulation and experimental analysis are presented in here. Perspectives for future research conclude this paper.
机译:在信号处理技术中,盲源分离(BSS)和独立组件分析(ICA)的基础数学工具在各个研究领域的科学界中受到越来越多的关注。振动分析是该最新技术的潜在应用领域。实际上,BSS方法旨在从对传感器矩阵的一组观测值中获取未知源信号,而不必事先了解这些源。在监视和诊断目的中,轴承缺陷对于旨在预测那些故障以及潜在的发动机故障的制造商来说是一个问题。这些缺陷可能是未知的来源,人们希望通过靠近旋转机械放置的加速度计矩阵从一组记录信号中进行估算。研究表明,这些振动信号是广义的循环平稳[[11] RBRandall,J。Antoni,S。Chobsaard,频谱相关性和包络分析在轴承故障和其他循环平稳机器信号诊断中的关系,机械系统和信号处理15(5)(2001)945-962]。这项工作中提出的BSS新算法正是基于该特性。这些过程的二阶统计量使我们找到了一种用于盲源分离的新分离标准。本文介绍了这项研究的理论结果,仿真和实验分析。本文总结了未来研究的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号