首页> 外文期刊>Mechanical systems and signal processing >A cosine similarity-based negative selection algorithm for time series novelty detection
【24h】

A cosine similarity-based negative selection algorithm for time series novelty detection

机译:基于余弦相似度的负选择时间序列新颖性检测算法

获取原文
获取原文并翻译 | 示例

摘要

Detecting the new or anomalous signal sequences in the observed time series data is a problem of great practical interest for many applications. The bio-inspired negative selection algorithm, whose main idea is to discriminate the non-self pattern from self pattern, has drawn much attention because only normal information is needed for training. Most of the proposed algorithms are based on binary-valued string matching. A real-valued negative selection algorithm for novelty detection in vibration signal is implemented in this paper. The vector set for calculation is constructed by sampling the discrete time series from a moving time window, The matching affinity between two vectors is measured by cosine similarity. The calculated results show that the cosine similarity-based algorithm is more practical for potential applications in online signal monitoring.
机译:对于许多应用来说,在观察到的时间序列数据中检测新的或异常的信号序列是一个非常实际的问题。受生物启发的否定选择算法的主要思想是将非自我模式与自我模式区分开来,因此受到了广泛关注,因为只需要常规信息即可进行训练。大多数提出的算法都基于二进制值的字符串匹配。本文实现了一种用于振动信号新颖性检测的实值负选择算法。通过从移动时间窗口对离散时间序列进行采样来构造要计算的向量集。两个向量之间的匹配亲和力通过余弦相似度来衡量。计算结果表明,基于余弦相似度的算法对于在线信号监测中的潜在应用更为实用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号