首页> 外文期刊>Mechanical systems and signal processing >Novelty detection in a changing environment: A negative selection approach
【24h】

Novelty detection in a changing environment: A negative selection approach

机译:不断变化的环境中的新颖性检测:否定选择方法

获取原文
获取原文并翻译 | 示例

摘要

In the recent past, there have been a number of engineering studies motivated by analogies with the human immune system. The immune system has provided a rich source of inspiration for pattern recognition, machine learning and data mining analyses. One of the properties of the immune system which proves particularly useful for novelty detection is that of selfon-self discrimination and this forms the basis of the negative selection algorithm which has previously been applied by other researchers to the problem of time-series novelty detection. The object of the current paper is to apply the negative selection algorithm to more general feature sets and also to consider the case of novelty detection where the normal condition set is significantly non-Gaussian or varies with operational or environmental conditions.
机译:在最近的过去,已经进行了许多与人类免疫系统类似的工程研究。免疫系统为模式识别,机器学习和数据挖掘分析提供了丰富的灵感来源。证明对新颖性检测特别有用的免疫系统特性之一是自我/非自我歧视,这构成了否定选择算法的基础,该算法先前已被其他研究人员应用于时间序列新颖性问题检测。本文的目的是将否定选择算法应用于更一般的特征集,并考虑新颖性检测的情况,其中正常条件集明显不是高斯分布,或者随操作或环境条件而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号