首页> 外文期刊>Mechanical systems and signal processing >Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
【24h】

Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension

机译:基于支持向量机和分形维数的滚动轴承智能故障诊断

获取原文
获取原文并翻译 | 示例

摘要

The development of non-linear dynamic theory brought a new method for recognising and predicting the complex nonlinear dynamic behaviour. Fractal dimension can quantitatively describe the non-linear behaviour of vibration signal. In the present paper, the capacity dimension, information dimension and correlation dimension are applied to classify various fault types and evaluate various fault conditions of rolling element bearing, and the classification performance of each fractal dimension and their combinations are evaluated by using SVMs. Experiments on 10 fault data sets showed that the classification performance of the single fractal dimension is quite poor on most data sets, and for a given data set, each fractal dimension exhibited different classification ability, this indicates that various fractal dimensions contain various fault information. Experiments on different combinations of the fractal dimensions demonstrated that the combination of all these three fractal dimensions gets the highest score, but the classification performance is still poor on some data sets. In order to improve the classification performance of the SVM further, 11 time-domain statistical features are introduced to train the SVM together with three fractal dimensions, and the classification performance of the SVM is improved significantly. At the same time, experimental results showed that the classification performance of the SVM trained with 11 time-domain statistical features in tandem with three fractal dimensions outperforms that of the SVM trained only with 11 time-domain statistical features or with three fractal dimensions.
机译:非线性动力学理论的发展带来了一种识别和预测复杂非线性动力学行为的新方法。分形维数可以定量地描述振动信号的非线性行为。本文采用容量维,信息维和相关维对滚动轴承的各种故障类型进行分类和评估各种故障条件,并利用支持向量机对各个分形维及其组合的分类性能进行评估。对10个断层数据集进行的实验表明,在大多数数据集上,单个分形维数的分类性能均很差,对于给定的数据集,每个分形维数表现出不同的分类能力,这表明各种分形维数包含各种断层信息。分形维数不同组合的实验表明,这三个分形维数的组合得分最高,但是在某些数据集上分类性能仍然很差。为了进一步提高支持向量机的分类性能,引入了11个时域统计特征对支持向量机进行分类和三个分形维数训练,显着提高了支持向量机的分类性能。同时,实验结果表明,具有11个时域统计特征并具有三个分形维数的SVM训练的分类性能优于仅具有11个时域统计特征或具有三个分形维数训练的SVM的分类性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号