首页> 外文期刊>Mechanical systems and signal processing >Detection and identification of nonlinearities by amplitude and frequency modulation analysis
【24h】

Detection and identification of nonlinearities by amplitude and frequency modulation analysis

机译:通过幅度和频率调制分析来检测和识别非线性

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an amplitude and frequency modulation method (AFMM) for extracting characteristics of nonlinear systems and intermittent transient responses by processing stationary/transient responses using the empirical mode decomposition, Hilbert-Huang transform (HHT), and nonlinear dynamic characteristics derived from perturbation analysis. A sliding-window fitting (SWF) method is derived and used to show the physical implications of the proposed method and other methods for data processing and transformation. Similar to the wavelet transform, the SWF uses windowed regular harmonics and function orthogonality to extract time-localized regular and/or distorted harmonics, and then the amplitude and frequency modulations of the harmonics are used to identify system nonlinearities. On the other hand, the HHT uses the apparent time scales revealed by the signal's local maxima and minima and cubic splines of the extrema to sequentially sift components of different time scales, starting from high-frequency to low-frequency ones. Because HHT does not use predetermined basis functions and function orthogonality for component extraction, it provides more accurate instant amplitudes and frequencies of extracted components for accurate estimation of system characteristics and nonlinearities. Moreover, because the first component extracted by HHT contains all original discontinuities, its time-varying amplitude and frequency are excellent indicators for pinpointing times and locations of impulsive external loads. However, the discontinuity-induced Gibbs' phenomenon makes HHT analysis inaccurate around the two data ends. On the other hand, the SWF analysis is not affected by Gibbs' phenomenon, but it cannot extract accurate time-varying frequencies and amplitudes because of the use of predetermined basis functions, function orthogonality, and windowed curve fitting for component extraction. Numerical results show that the proposed AFMM can provide accurate estimation of softening and hardening effects, different orders of nonlinearity, linear and nonlinear system parameters, and time instants of intermittent transient responses.
机译:本文提出了一种振幅和频率调制方法(AFMM),该方法通过使用经验模式分解,希尔伯特-黄氏变换(HHT)和从摄动分析得出的非线性动态特性来处理平稳/瞬态响应,从而提取非线性系统的特征和间歇性瞬态响应。推导了滑动窗口拟合(SWF)方法,该方法用于显示所提出的方法和其他方法进行数据处理和转换的物理含义。类似于小波变换,SWF使用加窗的常规谐波和函数正交性提取时间局部化的常规和/或失真的谐波,然后使用谐波的幅度和频率调制来识别系统非线性。另一方面,HHT使用信号局部最大值和极值的三次样条和三次样条揭示的视在时间标度,依次筛选从高频到低频的不同时标的分量。因为HHT并未使用预定的基函数和函数正交性进行成分提取,所以它为提取的成分提供了更准确的即时幅度和频率,以准确估算系统特性和非线性。此外,由于由HHT提取的第一分量包含所有原始不连续性,因此其随时间变化的幅度和频率是确定脉冲外部负载的时间和位置的极佳指标。但是,不连续性引起的吉布斯现象使HHT分析在两个数据端附近不准确。另一方面,SWF分析不受吉布斯现象的影响,但是由于使用预定的基函数,函数正交性和窗口曲线拟合进行成分提取,因此无法提取准确的时变频率和幅度。数值结果表明,所提出的AFMM可以准确估计软化和硬化效果,非线性的不同阶数,线性和非线性系统参数以及间歇瞬态响应的时刻。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号