首页> 外文期刊>Mechanical systems and signal processing >Statistical pattern recognition for Structural Health Monitoring using time series modeling: Theory and experimental verifications
【24h】

Statistical pattern recognition for Structural Health Monitoring using time series modeling: Theory and experimental verifications

机译:使用时间序列建模进行结构健康监测的统计模式识别:理论和实验验证

获取原文
获取原文并翻译 | 示例

摘要

Statistical pattern recognition methodologies have gained considerable attention for Structural Health Monitoring (SHM) applications to detect changes in a structure (e.g. damage). For most of such applications, outlier analysis of the damage sensitive features obtained from the SHM data is used to detect the changes in the structure. There are a number of different approaches used by different research groups and it is widely accepted that success of a certain methodology may depend on the structure and/or structural change to be identified. Therefore, it is very important that promising methodologies are verified by using different test structures and damage cases. The main objective of this study is to investigate statistical pattern recognition methods in the context of SHM using different laboratory structures. Time series modeling, i.e. auto-regressive models, is used in conjunction with Mahalanobis distance-based outlier detection algorithms to identify different types of structural changes on different test structures. Similar approaches were reported in the literature but here the methodology is modified by using random decrement functions to eliminate the effects of the exogenous input. Then a number of tests are conducted by using two different test structures in laboratory conditions in order to evaluate the results in a comparable fashion. The first test specimen is a simply supported steel beam where the second structure is a highly redundant steel grid structure. Various damage conditions are simulated by using these structures. The ambient vibration data is analyzed by using the methodology described and results are presented. Finally, the advantages and drawbacks of the methodology are discussed in the light of experimental results.
机译:统计模式识别方法已经在结构健康监测(SHM)应用中获得了相当大的关注,以检测结构的变化(例如损坏)。对于大多数此类应用程序,从SHM数据获得的对损伤敏感特征的离群分析用于检测结构的变化。不同的研究小组使用了许多不同的方法,一种方法论的成功可能取决于所确定的结构和/或结构变化已被广泛接受。因此,通过使用不同的测试结构和损坏案例来验证有前途的方法非常重要。这项研究的主要目的是研究使用不同实验室结构的SHM环境下的统计模式识别方法。时间序列建模(即自回归模型)与基于Mahalanobis距离的离群值检测算法结合使用,以识别不同测试结构上不同类型的结构变化。文献中也报道了类似的方法,但此处通过使用随机减量函数来消除外来输入的影响来修改了方法。然后,在实验室条件下使用两种不同的测试结构进行了许多测试,以便以可比较的方式评估结果。第一个试样是简单支撑的钢梁,第二个结构是高度冗余的钢格架结构。使用这些结构可以模拟各种损坏条件。使用所描述的方法分析环境振动数据,并给出结果。最后,结合实验结果讨论了该方法的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号