首页> 外文期刊>Mechanical systems and signal processing >Application Of The Eemd Method To Rotor Fault Diagnosis Of Rotating Machinery
【24h】

Application Of The Eemd Method To Rotor Fault Diagnosis Of Rotating Machinery

机译:Eemd方法在旋转机械转子故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

Empirical mode decomposition (EMD) is a self-adaptive analysis method for nonlinear and non-stationary signals. It may decompose a complicated signal into a collection of intrinsic mode functions (IMFs) based on the local characteristic time scale of the signal. The EMD method has attracted considerable attention and been widely applied to fault diagnosis of rotating machinery recently. However, it cannot reveal the signal characteristic information accurately because of the problem of mode mixing. To alleviate the mode mixing problem occurring in EMD, ensemble empirical mode decomposition (EEMD) is presented. With EEMD, the components with truly physical meaning can be extracted from the signal. Utilizing the advantage of EEMD, this paper proposes a new EEMD-based method for fault diagnosis of rotating machinery. First, a simulation signal is used to test the performance of the method based on EEMD. Then, the proposed method is applied to rub-impact fault diagnosis of a power generator and early rub-impact fault diagnosis of a heavy oil catalytic cracking machine set. Finally, by comparing its application results with those of the EMD method, the superiority of the proposed method based on EEMD is demonstrated in extracting fault characteristic information of rotating machinery.
机译:经验模态分解(EMD)是一种针对非线性和非平稳信号的自适应分析方法。它可以根据信号的本地特征时间尺度将复杂的信号分解为固有模式函数(IMF)的集合。 EMD方法已经引起了广泛的关注,并且最近被广泛地应用于旋转机械的故障诊断中。然而,由于模式混合的问题,它不能准确地显示信号特征信息。为了缓解EMD中出现的模式混合问题,提出了集成经验模式分解(EEMD)。使用EEMD,可以从信号中提取真正具有物理意义的成分。利用EEMD的优势,提出了一种基于EEMD的旋转机械故障诊断方法。首先,使用仿真信号来测试基于EEMD的方法的性能。然后,将所提出的方法应用于发电机的碰摩故障诊断和重油催化裂化机组的早期碰摩故障诊断。最后,通过将其与EMD方法的应用结果进行比较,证明了该方法在提取旋转机械故障特征信息中的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号