首页> 外文期刊>Mechanical systems and signal processing >Constrained independent component analysis and its application to machine fault diagnosis
【24h】

Constrained independent component analysis and its application to machine fault diagnosis

机译:约束独立分量分析及其在机械故障诊断中的应用

获取原文
获取原文并翻译 | 示例

摘要

For machine fault diagnosis the signals from working machine are always numerous, even uncountable, but there contains only a little useful information. Hence how to find out the useful signal from numerous signals, including noises, that is, how to only extract the desired fault signal is very attractive. This paper shows that the constrained independent component analysis (cICA) can solely extract desired faulty signal using some prior mechanical information. The methods of creating reference of dCA for machine diagnostics are discussed, and the effectiveness of the method is successfully verified by simulations and experiments.
机译:对于机器故障诊断,来自工作机器的信号总是很多,甚至是不可数的,但其中仅包含一些有用的信息。因此,如何从包括噪声的众多信号中找出有用的信号,即如何仅提取期望的故障信号是非常有吸引力的。本文表明,受约束的独立分量分析(cICA)可以仅使用一些先前的机械信息来提取所需的故障信号。讨论了为机器诊断创建dCA参考的方法,并通过仿真和实验成功验证了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号