首页> 外文期刊>Mechanical systems and signal processing >CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks
【24h】

CNC machine tool's wear diagnostic and prognostic by using dynamic Bayesian networks

机译:动态贝叶斯网络对数控机床的磨损诊断与预测

获取原文
获取原文并翻译 | 示例

摘要

The failure of critical components in industrial systems may have negative consequences on the availability, the productivity, the security and the environment. To avoid such situations, the health condition of the physical system, and particularly of its critical components, can be constantly assessed by using the monitoring data to perform on-line system diagnostics and prognostics. The present paper is a contribution on the assessment of the health condition of a computer numerical control (CNC) tool machine and the estimation of its remaining useful life (RUL). The proposed method relies on two main phases: an off-line phase and an on-line phase. During the first phase, the raw data provided by the sensors are processed to extract reliable features. These latter are used as inputs of learning algorithms in order to generate the models that represent the wear's behavior of the cutting tool. Then, in the second phase, which is an assessment one, the constructed models are exploited to identify the tool's current health state, predict its RUL and the associated confidence bounds. The proposed method is applied on a benchmark of condition monitoring data gathered during several cuts of a CNC tool. Simulation results are obtained and discussed at the end of the paper.
机译:工业系统中关键组件的故障可能会对可用性,生产率,安全性和环境产生负面影响。为了避免这种情况,可以通过使用监视数据执行在线系统诊断和预测来不断评估物理系统(尤其是其关键组件)的健康状况。本文是对计算机数控(CNC)工具机的健康状况评估以及其剩余使用寿命(RUL)估算的贡献。所提出的方法依赖于两个主要阶段:离线阶段和在线阶段。在第一阶段,将处理传感器提供的原始数据以提取可靠的特征。后者用作学习算法的输入,以便生成表示切削刀具磨损行为的模型。然后,在第二阶段(评估阶段)中,利用构建的模型来识别工具的当前健康状态,预测其RUL以及相关的置信范围。所提出的方法适用于在几次CNC工具切割过程中收集的状态监视数据的基准。仿真结果已获得并在本文结尾处进行了讨论。

著录项

  • 来源
    《Mechanical systems and signal processing》 |2012年第4期|p.167-182|共16页
  • 作者单位

    FEMTO-ST Institute, UMR CNRS 6174 - UFC/ENSMM/UTBM Automatic Control and Micro-Mechatronic Systems Department, 24. rue Alain Savory 25000 Besanfon, France,ALSTOM Transport, 7, avenue De Lattre De Tassigny, BP 49, 25290 Omans, France;

    FEMTO-ST Institute, UMR CNRS 6174 - UFC/ENSMM/UTBM Automatic Control and Micro-Mechatronic Systems Department, 24. rue Alain Savory 25000 Besanfon, France;

    FEMTO-ST Institute, UMR CNRS 6174 - UFC/ENSMM/UTBM Automatic Control and Micro-Mechatronic Systems Department, 24. rue Alain Savory 25000 Besanfon, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    diagnostic; prognostic; remaining useful life; condition-based maintenance; hidden markov models; tool wear;

    机译:诊断;预后剩余使用寿命;基于状态的维护;隐藏的马尔可夫模型;工具磨损;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号