首页> 外文期刊>Mechanical systems and signal processing >Singular value decomposition based feature extraction approaches for classifying faults of induction motors
【24h】

Singular value decomposition based feature extraction approaches for classifying faults of induction motors

机译:基于奇异值分解的感应电动机故障特征提取方法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes singular value decomposition (SVD)-based feature extraction methods for fault classification of an induction motor: a short-time energy (STE) plus SVD technique in the time-domain analysis, and a discrete cosine transform (DCT) plus SVD technique in the frequency-domain analysis. To early identify induction motor faults, the extracted features are utilized as the inputs of multi-layer support vector machines (MLSVMs). Since SVMs perform well with the radial basis function (RBF) kernel for appropriately categorizing the faults of the induction motor, it is important to explore the impact of the σ values for the RBF kernel, which affects the classification accuracy. Likewise, this paper quantitatively evaluates the classification accuracy with different numbers of features, because the number of features affects the classification accuracy. According to the experimental results, although SVD-based features are effective for a noiseless environment, the STE plus SVD feature extraction approach is more effective with and without sensor noise in terms of the classification accuracy than the DCT plus SVD feature extraction approach. To demonstrate the improved classification of the proposed approach for identifying faults of the induction motor, the proposed SVD based feature extraction approach is compared with other state-of-the art methods and yields higher classification accuracies for both noiseless and noisy environments than conventional approaches.
机译:本文提出了基于奇异值分解(SVD)的特征量提取方法,用于感应电动机的故障分类:时域分析中的短时能量(STE)加SVD技术,以及离散余弦变换(DCT)加SVD技术在频域分析中。为了及早识别感应电动机故障,提取的特征用作多层支持向量机(MLSVM)的输入。由于SVM在径向基函数(RBF)内核中表现良好,可以对感应电动机的故障进行适当分类,因此,探索σ值对RBF内核的影响非常重要,这会影响分类精度。同样,由于特征数量会影响分类精度,因此本文对不同特征数量的分类准确性进行了定量评估。根据实验结果,尽管基于SVD的特征对于无噪声环境是有效的,但在分类精度方面,无论有无噪声,STE加SVD特征提取方法比DCT加SVD特征提取方法更有效。为了证明所提出的用于识别感应电动机故障的方法的改进分类,将所提出的基于SVD的特征提取方法与其他现有技术方法进行了比较,并且与传统方法相比,在无噪声和嘈杂的环境下均具有更高的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号