首页> 外文期刊>Mechanical systems and signal processing >Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet
【24h】

Compound faults detection of rotating machinery using improved adaptive redundant lifting multiwavelet

机译:改进的自适应冗余提升小波在旋转机械复合故障检测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Due to the character of diversity and complexity, the compound faults detection of rotating machinery under non-stationary operation turns into a challenging task. Multiwavelet with two or more base functions and many excellent properties provides a possibility to detect and extract all the features of compound faults at one time. However, the fixed basis functions independent of the vibration signal may decrease the accuracy of fault detection. Moreover, the decomposition result of discrete multiwavelet transform does not possess time invariance, which is harmful to extract the feature of periodical impulses. To overcome these deficiencies, based on the Hermite splines interpolation, taking the minimum envelope spectrum entropy as the optimization objective, adaptive redundant lifting multiwavelet is developed. Additionally, in order to eliminate error propagation of decomposition results, adaptive redundant lifting multiwavelet is improved by adding the normalization factors. As an effective method, Hilbert transform demodulation analysis is used to extract the fault feature from the high frequency modulation signal. The proposed method incorporating improved adaptive redundant lifting multiwavelet (IARLM) with Hilbert transform demodulation analysis is applied to compound faults detection for the simulation experiment, rolling element bearing test bench and traveling unit of electric locomotive. Compared with some other fault detection methods, the results show the superior effectiveness and reliability on the compound faults detection.
机译:由于多样性和复杂性的特征,非平稳运行下旋转机械复合故障的检测成为一项艰巨的任务。具有两个或多个基本函数且具有许多优异性能的多小波提供了一次检测和提取复合故障的所有特征的可能性。但是,与振动信号无关的固定基函数可能会降低故障检测的准确性。此外,离散多小波变换的分解结果不具有时间不变性,这不利于提取周期性脉冲的特征。为了克服这些缺陷,在Hermite样条插值的基础上,以最小包络谱熵为优化目标,开发了自适应冗余提升小波。另外,为了消除分解结果的误差传播,通过添加归一化因子来改进自适应冗余提升小波。作为一种有效的方法,希尔伯特变换解调分析用于从高频调制信号中提取故障特征。该方法结合了改进的自适应冗余提升小波(IARLM)和希尔伯特变换解调分析技术,用于电力机车的仿真实验,滚动轴承测试台和行驶单元的复合故障检测。与其他故障检测方法相比,结果表明该方法在复合故障检测中具有较高的有效性和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号