首页> 外文期刊>Mechanical systems and signal processing >Regression to fuzziness method for estimation of remaining useful life in power plant components
【24h】

Regression to fuzziness method for estimation of remaining useful life in power plant components

机译:回归至模糊度法,估算电厂组件的剩余使用寿命

获取原文
获取原文并翻译 | 示例

摘要

Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.
机译:为减轻发电厂中的严重事故,需要所有系统的可靠运行以及及时更换机械组件。因此,电力系统的持续监视是电厂总体安全,成本控制和及时维护的关键问题。在本文中,提出了一种称为模糊性回归的方法,该方法可估算电厂的剩余使用寿命(RUL)。发电厂的组件。 RUL定义为进行测量的时间与该组件的估计故障时间之间的差值。该方法旨在通过对专家的操作经验和应用于系统的专业知识进行建模,来弥补历史数据的潜在不足。它最初标识关键的降级参数及其相关的值范围。完成后,操作员的经验将通过覆盖整个参数范围的模糊集进行建模。然后将此模型与线性回归和组件的失效点协同使用,以估计RUL。在三种不同情况下,对估算的涡轮机(电厂的基本发电组件)的RUL进行了测试。结果证明了该方法对于无法获得运营数据的组件的好处,并强调了选择模糊集的重要性以及知识表示对预测输出的影响。用于预测的基于数据的简单线性回归模型,其执行效果与所提供的方法相同或更差。此外,方法的比较突出显示了采用适当的模糊集进行参数表示所带来的估计改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号