首页> 外文期刊>Mechanical systems and signal processing >Uncertainty quantification based on pillars of experiment, theory, and computation. Part Ⅰ: Data analysis
【24h】

Uncertainty quantification based on pillars of experiment, theory, and computation. Part Ⅰ: Data analysis

机译:基于实验,理论和计算支柱的不确定性量化。第一部分:数据分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper we provide a general methodology of analysis and design of systems involving uncertainties. Available experimental data is enclosed by some geometric figures (triangle, rectangle, ellipse, parallelogram, super ellipse) of minimum area. Then these areas are inflated resorting to the Chebyshev inequality in order to take into account the forecasted data. Next step consists in evaluating response of system when uncertainties are confined to one of the above five suitably inflated geometric figures. This step involves a combined theoretical and computational analysis. We evaluate the maximum response of the system subjected to variation of uncertain parameters in each hypothesized region. The results of triangular, interval, ellipsoidal, parallelogram, and super ellipsoidal calculi are compared with the view of identifying the region that leads to minimum of maximum response. That response is identified as a result of the suggested predictive inference. The methodology thus synthesizes probabilistic notion with each of the five calculi. Using the term "pillar" in the title was inspired by the News Release (2013) on according Honda Prize to J. Tinsley Oden, stating, among others, that "Dr. Oden refers to computational science as the "third pillar" of scientific inquiry, standing beside theoretical and experimental science. Computational science serves as a new paradigm for acquiring knowledge and informing decisions important to humankind". Analysis of systems with uncertainties necessitates employment of all three pillars. The analysis is based on the assumption that that the five shapes are each different conservative estimates of the true bounding region. The smallest of the maximal displacements in x and y directions (for a 2D system) therefore provides the closest estimate of the true displacements based on the above assumption.
机译:在本文中,我们提供了涉及不确定性的系统分析和设计的一般方法。可用的实验数据用最小面积的一些几何图形(三角形,矩形,椭圆形,平行四边形,超椭圆形)围起来。然后,这些区域因切比雪夫不等式而膨胀,以便考虑预测数据。下一步是评估将不确定性限制在上述五个适当膨胀的几何图形之一时的系统响应。此步骤涉及理论和计算分析的结合。我们评估每个假设区域中不确定参数变化时系统的最大响应。比较三角形,区间,椭圆形,平行四边形和超椭圆形结石的结果,以识别导致最大响应最小的区域。该响应被确定为建议的预测推断的结果。因此,该方法将概率概念与五个计算中的每一个进行了综合。标题中使用“支柱”一词是受本田奖授予J. Tinsley Oden的《新闻稿》(2013年)的启发,其中包括“ Oden博士将计算科学称为科学的“第三大支柱”探究,站在理论和实验科学旁边。计算科学是获取知识和告知对人类重要的决定的新范式。”对具有不确定性的系统进行分析需要使用所有三个支柱。该分析基于以下假设:五个形状分别是真实边界区域的不同保守估计。因此,基于上述假设,x和y方向上最大位移的最小值(对于2D系统)提供了真实位移的最接近估计值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号