首页> 外文期刊>Mechanical systems and signal processing >Restoring method for missing data of spatial structural stress monitoring based on correlation
【24h】

Restoring method for missing data of spatial structural stress monitoring based on correlation

机译:基于相关性的空间结构应力监测数据丢失恢复方法

获取原文
获取原文并翻译 | 示例

摘要

Long-term monitoring of spatial structures is of great importance for the full understanding of their performance and safety. The missing part of the monitoring data link will affect the data analysis and safety assessment of the structure. Based on the long-term monitoring data of the steel structure of the Hangzhou Olympic Center Stadium, the correlation between the stress change of the measuring points is studied, and an interpolation method of the missing stress data is proposed. Stress data of correlated measuring points are selected in the 3 months of the season when missing data is required for fitting correlation. Data of daytime and nighttime are fitted separately for interpolation. For a simple linear regression when single point's correlation coefficient is 0.9 or more, the average error of interpolation is about 5%. For multiple linear regression, the interpolation accuracy is not significantly increased after the number of correlated points is more than 6. Stress baseline value of construction step should be calculated before interpolating missing data in the construction stage, and the average error is within 10%. The interpolation error of continuous missing data is slightly larger than that of the discrete missing data. The data missing rate of this method should better not exceed 30%. Finally, a measuring point's missing monitoring data is restored to verify the validity of the method.
机译:长期监测空间结构对于充分了解其性能和安全性至关重要。监视数据链接的缺失部分将影响结构的数据分析和安全评估。基于杭州奥林匹克中心体育馆钢结构的长期监测数据,研究了测点应力变化之间的相关性,提出了缺失应力数据的插值方法。当需要缺失数据以进行拟合相关时,在季节的三个月中选择相关测量点的应力数据。白天和晚上的数据分别进行插值。对于单点相关系数为0.9或更大的简单线性回归,插值的平均误差约为5%。对于多元线性回归,关联点数大于6后,插值精度不会明显提高。在构造阶段对缺失数据进行插值之前,应计算出施工步骤的应力基准值,且平均误差在10%以内。连续缺失数据的内插误差比离散缺失数据的内插误差稍大。此方法的数据丢失率最好不超过30%。最后,恢复测量点丢失的监视数据以验证该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号